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Abstract
The interest of this present work is to compare two selected durum wheat lines (G1 and G4) with their sensitive 
parents to fusarium head blight by determining the mycotoxin and ergosterol content in their mature grains. 
These lines are homozygous, fixed, obtained by the classical genealogical selection, and composed of seeds 
from diallel crosses between 4 parental varieties Saadi, Simeto, Ardente, and Waha. For this purpose, the 
grains of the studied genotypes (lines and parental varieties) were tested in the laboratory for their content 
of Trichothecenes B mycotoxins (TCTB) and ergosterol at full grain maturity using high-performance liquid 
chromatographic – diode array detection (HPLC-DAD). Fungal biomass was estimated by the content of 
ergosterol. However, the level of toxins was assessed by the levels of TCTB produced by the different 
studied isolates. The results obtained showed that the lines derived from crosses and, especially the G1 line, 
accumulated levels of TCTB and ergosterol significantly lower than their parents. Our findings open up a new 
avenue of investigation into fusarium head blight in Algeria, including the search for mycotoxins as potential 
causes of poorly understood human diseases and the factors that contribute to their accumulation in grains. 
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Introduction

Fusarium head blight (FHB) is one of the most destructive diseases of wheat crops (Spanic et al., 
2010; Abedi-Tizaki and Sabbagh, 2012). The disease affects the quality of production and wheat yield 
causing significant losses and hindering the marketing of the harvest (Cuperlovic-Culf et al., 2017; 
Malbrán et al., 2020). The humid to sub-humid climate with very favorable humidity and temperature 
conditions in several wheat-producing regions of the world promotes the appearance of fusarium 
head blight during anthesis (Kikot et al., 2011). Fusarium head blight is the result of a complex of 
Fusarium species attack in small grain cereals such as wheat (Malihipour et al., 2012; Karlsson et al., 
2021). Indeed, the infections caused by this disease are confirmed by laboratory analyses that showed 
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a high proportion of grains infected by several species of the genus Fusarium (Abdallah-Nekache et 
al., 2019; Hadjout et al., 2022a). In recent years, several studies carried out in Algeria reported that 
Fusarium culmorum (Wm.G. Sm.) Sacc. is the most dominant and most dangerous species on wheat, 
thus causing the appearance of fusarium head blight (Yekkour et al., 2015; Touati-Hattab et al., 2016; 
Laraba et al., 2017; Abdallah-Nekache et al., 2019; Hadjout et al., 2022a).

In addition to yield losses, F. culmorum causes the contamination of cereal crops by the 
production of type B trichothecene mycotoxins as this group of mycotoxins are harmful to humans 
and animals (Oufensou et al., 2021; Palacios et al., 2021). Trichothecenes contaminate wheat kernels 
and act as pathogenic factors for fusarium head blight (Malbrán et al., 2020). The occurrence and 
level of Fusarium spp. contamination at harvest may be high depending on weather conditions 
(Savoie et al., 2019). Moreover, TCTB included deoxynivalenol (DON) and four other type B 
trichothecenes (TCTB), 3-acetyldeoxynivalenol (3-ADON), 15-acetyldeoxynivalenol (15-ADON), 
nivalenol (NIV) and fusarenon-X (FX) (Alassane-Kpembi et al., 2015; Huang et al., 2020; Stȩpień 
and Chełkowski, 2010). Isolates of Fusarium culmorum causing fusarium head blight of Algerian 
wheat produce 3-acetyl-deoxynivalenol (3-ADON) or nivalenol (NIV) (Laraba et al., 2017; Hadjout 
et al., 2017, Hadjout et al., 2022a). The DON is one of the most common TCTB in food and feed and 
is considered the most serious toxin worldwide produced primarily by Fusarium spp. (Pietsch et al., 
2014; Mayer et al., 2017; Adami Ghamsari et al., 2021). Furthermore, it causes many undesirable 
effects in animals, such as anorexia and growth retardation (Jia et al., 2021). At the level of the plants, 
DON can have phytotoxic effects such as growth retardation, seedling inhibition, and regeneration of 
green plants (Rocha et al., 2005). Another formidable mycotoxin of the TCTB group is represented by 
NIV (Aupanun et al., 2019). Its appearance depends mainly on environmental conditions (Zingales et 
al., 2021). Recent studies have shown its cytotoxicity in vitro; it has been reported that NIV causes a 
marked decrease in cell proliferation (Nagashima et al., 2009; Zingales et al., 2021). In particular, NIV 
has resulted in the fragmentation of internucleosomal DNA, one of the characteristics of apoptosis 
(Nagashima et al., 2009).

In addition to TCTB and particularly DON, the determination of ergosterol levels in cereals 
after Fusarium infection is also important to identify the susceptibility and resistance of cultivars to 
fusarium head blight (Hofstad et al., 2016). Ergosterol is a metabolite that reflects fungal biomass 
(Abramson et al., 1998). The ergosterol content was already used to evaluate the colonization of 
phytopathogenic fungi of the genera Fusarium, Alternaria, Cladosporium, Mucor, Rhizopus, 
Aspergillus, Penicillium and Paecilomyces in feedstuffs (Müller and Schwadorf, 1990). Ergosterol 
formation is influenced by a number of factors, including plant variety, related resistance, fungal 
species, and fungal growth circumstances (Dohnal et al., 2010). It has been demonstrated that this 
sterol is present mainly in cereals infected by Fusarium spp. (Perkowski et al., 2008; Ropelewska, 
2018). High level of Fusarium colonization of wheat grains were found to have a strong correlation 
with ergosterol and deoxynivalenol concentrations (Wiwart et al., 2011). Fusarium isolates produce 
severe fungal infection on ears as they are highly pathogenic and can cause severe loss in seed number 
of around 80-90% and in particular in susceptible durum wheat variety (Mesterházy, 2002; Wiwart 
et al., 2011). 

The objective of this study was to examine the concentrations of TCTB and ergosterol in the 
grains of a few durum wheat genotypes. The presence of TCTB was used as indicator of the grain 
infection of the tested F. culmorum strains, while ergosterol as indicator for the quantification of fungal 
biomass. Indeed, the grains of the studied genotypes (lines and parental varieties) were analyzed in 
the laboratory for their content of TCTB and ergosterol at full grain maturity. For this purpose, our 
study focused on the one hand on the comparison of the accumulation rates of TCTB type mycotoxins 
between the different genotypes inoculated by the different F. culmorum isolates at the flowering 
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stage and, on the other hand, on the analysis of the accumulation rates of ergosterol in F. culmorum 
damaged grains, a parameter used to assess the existing fungal mass in the inoculated wheat grains.

Materials and methods
Plant material
The plant material used in our work includes a total of five durum wheat genotypes. Three parental 
varieties with the following codes: G10, Ardente; G11, Waha; G9, Simeto. Two genealogical lines 
carrying the symbols G1 and G4, composed of seeds resulting from diallel crosses between 5 
parents: Ardente, Waha, Simeto, Vitron, and Saadi, obtained in June 2011 at the Laboratory of Crop 
Productions, ENSA, El-Harrach, Algiers.

Fungal material
The fungal material was composed of four isolates of F. culmorum called FC1, FC2, FC3, FC4. The 
choice of these isolates was made according to their pathogenic and toxigenic power because they 
cause significant damage to wheat ears by producing toxins on the grains and they deteriorate the 
quality and quantity of grain yield (Hadjout et al., 2017). The four isolates used were obtained from 
durum wheat spikelets of the “Vitron” variety, which showed typical symptoms of fusarium head 
blight (Hadjout et al., 2022b). The isolates were first identified using morphological criteria according 
to Leslie and Summerell (2006), which were then verified using molecular tests (PCR assays using 
species-specific primers) (Touati-Hattab et al., 2016; Hadjout et al., 2022a).

Inoculum preparation
A PDA medium was prepared in Petri dishes to cultivate the Fusarium isolates. The latter were then 
placed in conditions of darkness and an average temperature of 25 °C until sporulation of the fungus. 
After an incubation period of 20 days, a volume of sterile distilled water of approximately 10 to 20 
mL was poured over the surface of the Petri dish containing the Fusarium mitospores (conidia). The 
concentration of the obtained conidial suspension was determined by counting of the number of 
conidia using the Malassez cell and adjusted to 5.104 spores mL-1 (Hadjout et al., 2017).

Source of samples analyzed
The samples analyzed in the laboratory were obtained after an experiment carried out in the field. 
The set-up of the tests comprises five trials: a control trial and four trials inoculated with the four 
isolates of F. culmorum (FC1, FC2, FC3, FC4). The experimental device chosen in our case was of 
the complete random block type, with three repetitions. To avoid any cross-contamination, rows of 
triticale were sown between the trials.

TCTB levels evaluation in mature durum wheat grains
In order to assess fusarium head blight, mycotoxin analyses were carried out on the healthy controls 
and the tests inoculated by the four isolates of F. culmorum.

TCTB extraction
The quantification of mycotoxins in the grains was carried out at the MycSA laboratory, INRAE 
of Bordeaux (France) according to the method described by Montibus et al. (2013) with some 
modifications. Ten grams of grains were ground with a centrifugal crusher (Tissuelyser, Retsh, 
Germany) (0.5 mm grid). In a 50 mL tube, 5 g of ground grains were added to 25 mL of an 
acetonitrile/water solution (84/16, v/v) under agitation at 50 rpm for 1 hour. After centrifugation, 5 
mL of supernatant was filtered on a Trichothecene P® column (R-Biopharm, Darmstadt, Germany), 
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from which 3 mL of this purified solution was transferred into a vial and evaporated at 50 °C under a 
nitrogen flow. The samples were then taken up in 300 µL of a methanol/water solution (1/1, v/v) and 
filtered on 0.22 µm porosity filters (Phenomenex, Torrance, USA) before analysis by UPLC-DAD.

TCTB determination by HPLC-DAD
TCTB quantification was performed with a Shimadzu Prominence UFLC device equipped with two 
LC-20 AD pumps, a DGU-20A3R degasser, a SIL-30 AC automatic passer, and an SPD-M20A diode 
array detector (Shimadzu Scientific Instruments, France). From the filtered extract, 0.5 µL were 
injected on a Kinetex column 2.6 μxB C18 - 100A (150 × 4.6 mm; 3.5 µm) (Phenomenex; France) 
maintained at 45 °C and a constant flow of 700 µL/min. The mobile phase consists of an ultrapure 
water solution (> 18 MΩ) with a pH-adjusted to 2.6 using a solution of ortho-phosphoric acid (solvent 
A) and acetonitrile (solvent B). The elution gradient was shown in Fig. 1.

Fig. 1 - Representation of the water/acetonitrile gradient used for TCTB assay.

The visible UV spectra were measured from 190 to 400 nm, with the peak area at 230 nm. External 
calibration was used to perform the quantification, which was done with standard solutions from 
DON, 15-ADON, 3-ADON, NIV, and FX (Romer Labs, Austria). 

Ergosterol content evaluation in mature durum wheat grains
Ergosterol extraction
The ergosterol extraction and assay methods were modified from those described by (Saraf et al., 
1997; Marín et al., 2005). The following steps were taken: 30 mg of ground grains were mixed with 
a 2 mL solution of potassium hydroxide and methanol (01/10, w/v) in a 15 mL tube and agitated for 
1 minute. After that, the alkaline hydrolysis was kept in the water bath for one hour at 80 °C, with 
regular tube degassing. After rapid sample cooling, 480 L of HCL 6 M and 500 L of MilliQ® water 
were added to stop the hydrolysis. Finally, two liquid-liquid extractions with 2 mL of hexane were 
performed in succession. The two organic phases were collected, grouped, and evaporated dry under 
nitrogen flux at room temperature after homogenization and centrifugation at 3000 rpm for 3 min. 
Before the HPLC-DAD assay, the dry samples were placed in 1 mL of methanol and filtered through 
a 0.22 m filter.
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Ergosterol assay by HPLC-DAD
Ergosterol elution was carried out on a Kinetex 2.6 xB C18 - 100A (150 × 4.6 mm) column 
(Phenomenex; France) kept at 40 °C. The injection volume was limited to 5 L for 15 min. Isocratic 
elution with 100% methanol was used at a fixed flow rate of 0.8 mL/min. The UV spectrum was 
measured from 190 to 400 nm, and ergosterol was quantified at 282 nm. The quantification was 
performed using an external calibration obtained from commercial ergosterol (Fulka, France). The 
detection limit for ergosterol was 6 µg g-1 DM.

Statistical analysis
For variance analysis, statistical analysis of the TCTB and ergosterol results was performed using 
the software statgraphics version 15.1.0. Then multiple comparisons of the means were carried out 
using the LSD test (Least Significant Difference) to determine the homogeneous groups at the 5% 
significance level.

Results

TCTB content evaluation in mature grains of durum wheat genotypes 
Depending on the isolate, TCTB were represented under our conditions either by DON or NIV. Thus, 
two isolates (FC1 and FC2) produce NIV and two other isolates (FC3 and FC4) produce DON. Under 
these conditions, the detection limit for each toxin was 1 µg g-1 DM.

During the assays, FX was not detected with the NIV chemotype. The 3-ADON acetylated 
form was also not observed in samples inoculated with DON/3-ADON chemotype isolates. As for the 
developed symptoms, the quantity of mycotoxins in grains varies greatly depending on isolates and 
genotypes. For the controls, the contents were zero in all the samples.

Nivalenol (NIV) levels evaluation
The mean NIV levels produced by fungal isolates were calculated for each genotype and presented in 
Fig. 2. In terms of NIV accumulation, the variance analysis for this parameter in each of the two tests 
(test with FC1 isolate and test with FC2 isolate) showed a significant difference between the different 
genotypes studied (Fig. 2). In addition, individual statistical analysis results showed that in the FC1 
test, both lines G1 and G4 presented the lowest NIV levels of the series respectively 4.63 µg g-1 DM 
for G1 and 6.37 µg g-1 DM for G4. The NIV content in the G1 line is below the detection limit (6 µg 
g-1 DM), and therefore this line practically did not accumulate NIV in its grains. In contrast, the two 
varieties G9, and G11, showed higher levels of this toxin, respectively 31.15 µg g-1 DM for G9 and 
39.34 µg g-1 DM for G11, while the G10 variety accumulated an average NIV content in its kernels of 
19.57 µg g-1 DM. For the FC2 assay, the NIV levels in all genotypes were lower than those produced 
by the FC1 isolate. Therefore, the FC1 isolate is more aggressive than FC2 regarding NIV production. 
Genotypes G1, G4, and G10 had low NIV levels of 1 µg g-1 DM, 2.95 µg g-1 DM, and 2.89 µg g-1 DM, 
respectively. All of these values were below the detection limit (< 6 µg g-1 DM), in which case the 
NIV quantities in the grains of these three genotypes cannot be detected by the method used. As for 
the two varieties G9 and G11, the NIV levels were higher, i.e 10.09 µg g-1 DM and 7.78 µg g-1 DM, 
respectively. The overall analysis of variance for the two inoculated tests with FC1 and FC2 revealed 
a significant difference between the two trials and another for the genotype * assay interaction (Fig. 
2). However, the genotype effect is not significant (P > 0.05).
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Fig. 2- Average Nivalenol (NIV) quantities contained in the samples analyzed (µg g-1 DM). FC1, FC2 - Fusarium 
culmorum isolates; G1, G4, G9, G10 et G11 – Durum wheat genotypes; the p value of independent test is 
presented with its threshold of significance; *p < 0.05; **p < 0.01; NS – Not Significant p > 0.05); values with the 
same letters in a column were not statistically different at the 5% significance level according to Fisher’s Least 
Significance Difference (LSD).
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Comparing the two tests, it appears that the two lines G1, and G4, have very low mean NIV 
levels of 2.82 µg g-1 DM for G1 and 4.66 µg g-1 DM for G4. In contrast, the G9 and G11 varieties 
accumulate very high quantities, averaging 20.62 µg g-1 for G9 and 23.56 µg g-1 for G11; the G10 
variety had an average intermediate content of only 11.23 µg g-1 DM.

Deoxynivalenol (DON) levels evaluation
For the accumulation of DON in the two assays, the variance analysis for this parameter revealed a 
significant difference between the genotypes (Fig. 3). In the FC3 isolate test, both genotypes G1 and 
G10 had low DON levels of 2.47 µg g-1 DM for G1 and 3.49 µg g-1 DM for G10. These quantities 
were below the detection limit (< 6 µg g-1 DM), which explains the absence of DON in the grains of 
these two genotypes. In contrast, the highest quantity of DON is found in the G9 variety at 56.52 µg 
g-1 DM. Finally, the G4 genotype accumulated 23.54 µg g-1 DM of DON, while the G11 genotype 
accumulated 32.64 µg g-1 DM of DON.

In the FC4 assay, The G1 line accumulated less DON, only 10.85 µg g-1 DM, followed by G10 
with 19.25 µg g-1 DM, while G11 had a very high DON content of 40.00 µg g-1 DM. The two genotypes 
G4, and G9, showed mean DON levels with 36.32 µg g-1 DM and 28.07 µg g-1 DM, respectively. 
Variance analysis for both assays (FC3 isolate and FC4 isolate assays) showed a significant difference 
for the DON parameter only for the interaction (Fig. 3), but the effect of genotypes and assays is not 
significant. 

The quantities of DON produced by the other two isolates (FC3 and FC4) were slightly higher 
than the NIV. Indeed, the G1 line accumulated less DON, i.e., 6.66 µg g-1 DM, and G10 with 11.37 µg 
g-1 DM. In contrast, The G4, G9, and G11 genotypes showed a high accumulation of DON, averaging 
29.93 µg g-1 DM, 42.30 µg g-1 DM, and 36.32 µg g-1 DM, respectively.

Based on the results of the quantification of TCTB (NIV and DON) in grains of all genotypes, 
the G1 line was the most resistant to TCTB accumulation, thus accumulating fewer toxins in their 
grains. However, the G9 and G11 varieties resulted with lower quantities of mycotoxins. Furthermore, 
the DON content of the G4 line grains was higher than that of the G10 variety.

Ergosterol content evaluation in mature grains of durum wheat genotypes
Figure 4 depicts the accumulated ergosterol levels in mature wheat grains of durum wheat genotypes, 
contaminated at flowering with F. culmorum isolates. The individual statistical analysis for ergosterol 
showed a significant difference between genotypes at the level of the assays with FC1, FC2, FC3 
isolates and a non-significant genotypic difference in the assay with isolate FC4. Similarly, the 
analysis of variance for all four assays revealed a difference between genotypes, while the effect of 
the four essays and the genotype * assay interaction is non-significant. 

The comparison of the genotypes (parental varieties and lines) for the ergosterol content shows 
that at the level of the test with the FC1 isolate, the G1 line has the lowest content, the G4 line 
comes in the second position, or 8.74 µg g-1 DM and 15.80 µg g-1 DM, respectively. In contrast, the 
two G9 and G11 varieties had higher levels of 73.82 µg g-1 DM and 82.73 µg g-1 DM, respectively; 
the G10 variety had an average ergosterol level of 37.20 µg g-1 DM. In the FC2 isolate trial, the 
lowest concentration was recorded in the G1 line with only 6.03 µg g-1 DM, whereas the highest 
concentration was recorded in the G9 variety with 51.79 µg g-1 DM. The genotypes G4, G10, and 
G11 have ergosterol levels of 15.49 µg g-1 DM, 10.37 µg g-1 DM, and 34.42 µg g-1 DM, respectively. 
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Fig. 3 - Average deoxynivalenol (DON) quantities contained in the samples analyzed (µg g-1DM). 
FC3, FC4 - Fusarium culmorum isolates; G1, G4, G9, G10 et G11 – Durum wheat genotypes; the p 
value of independent test is presented with its threshold of significance; *p < 0.05; **p < 0.01; ***p 
<0.001; NS – Not Significant p > 0.05); values with the same letters in a column were not statistically 
different at the 5% significance level according to Fisher’s Least Significance Difference (LSD).

http://


9

Hadjout, Zouidi

https://doi.org/10.6092/issn.2531-7342/14712

   Italian Journal of Mycology  52 (2023): 1-16

Fig.4-Ergosterol levels accumulated in mature grains of durum wheat genotypes contaminated at flowering with 
Fusarium culmorum isolates.
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In the FC3 isolate assay, the G1 and G10 genotypes had similar but low ergosterol levels with 
6.00 µg g-1 DM and 8.07 µg g-1 DM, respectively. The highest level was recorded in the G9 variety 
with 102.62 µg g-1 DM. At the same test level, the G4 and G11 genotypes showed levels of 26.27 
µg g-1 DM and 47.19 µg g-1 DM, respectively. Finally, in the FC4 isolate test, the G1 line recorded 
the lowest ergosterol levels in its grains, with 11.80 µg g-1 DM, followed by the G10 variety with 
25.16 µg g-1 DM, and the G9 variety with 107.37 µg g-1 DM. The G4 and G11 genotypes had average 
ergosterol levels of 46.08 µg g-1 DM and 56.96 µg g-1 DM, respectively.

The comparison of essays indicated that the G1 lines showed lower ergosterol levels than the 
other genotypes, with only 8.14 µg g-1 DM. In contrast, the G11 and G9 genotypes showed higher 
levels, with 55.33 µg g-1 DM for G11 and 83.90 µg g-1 DM for G9, respectively. The G10 genotype 
has averaged 20.20 µg g-1 DM and 25.91 µg g-1 DM for the G4 genotype.

Discussion

Durum wheat is one of the most important crops in Mediterranean countries (Alkadri et al., 2013) and 
worldwide (Bouanaka et al., 2021). In Algeria, durum wheat dominates the diet of the population. 
Production cannot satisfy the needs of a population which currently exceeds 40 million inhabitants 
and which is potentially and traditionally a consumer of this product, hence the recourse to imports. 
This decrease in production is due to several factors, of which the attacks of Fusarium spp. were 
confirmed by laboratory analysis, especially showing a high proportion of grains infected by several 
species of Fusarium (Hadjout et al., 2017).

The purpose of this study is the analysis of TCTB, ergosterol in durum wheat seeds, and the 
characterization of the toxinogenic potential of F. culmorum isolates by HPLC. High-performance 
liquid chromatography with fluorescence detection coupled to a diode array detector (HPLC-FLD/
DAD) was used as an effective analytical method for ergosterol (Álvarez et al., 2021). The use of 
HPLC/MS technology makes it possible to evaluate the quantity of ergosterol which may be linked 
to the fungal biomass quantification of F. culmorum and this technique also allows to estimate the 
quantify the TCTB type toxin (Touati-Hattab et al., 2016). The obtained results showed that resistance 
levels to fusarium head blight and mycotoxin accumulation in the G1 line are very high compared to 
the two susceptible parent varieties (G9 and G11). The latter two have higher levels of ergosterol in the 
grains than G1, thus indicating a greater fungal infection on the ears of wheat at the time of flowering. 
The results of Zhao et al. (2018) revealed that the “ND2710” wheat line is resistant to fusarium head 
blight compared to other parents (Grandin and Wheaton), which are very susceptible to FHB. The 
same authors report that the sources of resistance of this line (ND2710) are probably derived from 
the wheat cultivar Sumai 3 because the other parents (Grandin and Wheaton) are very sensitive to 
FHB. Furthermore, some triticale lines showed a weak infection of the ear by Fusarium spp. at the 
flowering stage but showed significant damage at the grain level, with a higher rate of accumulation 
of the TCTB type toxin (Góral et al., 2021). In particular, the levels of TCTB accumulated in grains 
are correlated with fungal contamination. A strong correlation between the level of Fusarium spp. 
infection in the grain and the quantity of stored toxin was observed (Touati-Hattab et al., 2016; Hadjout 
et al., 2017). Thus, the G1 line accumulates few TCTB (NIV: 4.63 µg g-1 DM, DON: 2.47 µg g-1 DM), 
while G9 (NIV: 31.15 µg g-1 DM; DON: 56.52 µg g-1 DM) and G11 (NIV: 39.34 µg g-1 DM; DON: 
32.64 µg g-1 DM) store a greater quantity. The results showed that both lines were less susceptible to 
fusarium head blight than commercial varieties, especially the G1 line. TCTB and ergosterol values 
associated with the G1 line were 5 to 10 times lower than those assessed for susceptible commercial 
varieties [Ardente (G10), Waha (G11), Simeto (G9)]. For this purpose, ergosterol analysis of seeds 
of wheat genotypes infected with F. culmorum showed different resistance to fusarium head blight 
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(Snijders and Krechting, 1992). As a result, these data strongly support a strong correlation between 
levels of trichothecene production and observed symptoms. The amount of toxin and the growth of 
the fungus in the grain, as assessed by ergosterol, have a strong correlation (Touati-Hattab et al., 
2016). The results of TCTB and ergosterol were also consistent with those of Atlin et al. (1983), 
who found a high and significant correlation between DON concentration and fusarium head blight 
intensity in maize. However, Miller et al. (1985) observed cases of high concentrations of ergosterol, 
representing a quantitative index of the presence of Fusarium in wheat tissues. In addition, there 
is still a strong correlation between the quantity of toxin and the development of F. culmorum in 
the grain as measured by the ergosterol index. This correlation was subsequently reported by many 
authors (Mirocha et al., 1994; Perkowski et al., 1996; Miedaner et al., 2000).

Furthermore, it should be noted that F. culmorum is known to produce two types of trichothecenes: 
NIV and DON. The NIV is the most neglected toxin because it is found in the lower parts in wheat. 
This toxin is responsible for the inhibition of DNA synthesis, which explains the course of several toxic 
phenomena leading to cell death (Pasquali et al., 2010). By against, DON plays a role in pathogenicity, 
the development of the disease and the destruction of chlorophyll, which explains the early drying 
of Fusarium spikes. It is produced during infection, when moisture conditions are important. Thus, 
the harvest delay caused by rainy weather increases the production of DON (Wagacha and Muthomi, 
2007; Lori et al., 2009).

Miller and Arnison (1986) demonstrated DON accumulation resistance in some wheat cultivars. 
Furthermore, the results of our trials showed that the difference in DON accumulation resistance 
between genotypes would be easily discernible in the presence of significant infection, i.e. disease 
severity at the time of flowering. On the other hand, mycotoxin concentrations are lower in low 
sensitivity lines compared to their more sensitive counterparts from the same cross (Atanassov et al., 
1993).

Snijders and Krechting (1992) also demonstrated that DON could be translocated to the young 
ear before being colonized by the pathogen, indicating that a line resistant to Fusarium hyphal 
invasion could prevent DON translocation. According to Snijders and Krechting (1992), resistance to 
DON could increase resistance of wheat and prevent the accumulation of trichothecenes. Some wheat 
cytoplasm is trichothecenes tolerant cytologically, which can be attributed to improved membrane 
stability and the presence of modified peptidyl transferase (Wang and Miller, 1988; Miller, 1989).

Conclusion

In Algeria, the attacks of durum wheat by fusarium head blight are confirmed by laboratory analyzes, 
which showed a high proportion of grains contaminated by F. culmorum species in sensitive genotypes. 
This work focused on biochemical characterization in the laboratory of trichothecenes type B (TCTB) 
and ergosterol. The obtained results revealed that the isolates from crosses showed higher resistance 
than their parents, which showed a significantly lower accumulation of TCTB and ergosterol. Under 
our crop conditions, no genotype has shown complete disease resistance. However, the G1 line has a 
high resistance level under our conditions. The toxin and ergosterol values associated with the G1 line 
were 5 to 10 times lower than those assessed for sensitive commercial varieties. In general, the results 
presented here showed the possibility of selecting new durum wheat genotypes adapted to Algerian 
climatic constraints and displaying a better tolerance to fusarium head blight.
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