

IJM – Italian Journal of Mycology, Vol. 52 (2023): 22–31 https://doi.org/10.6092/issn.2531-7342/15373

Supplementary material

The king oyster mushroom *Pleurotus eryngii* behaves as a virulent facultative parasite of *Eryngium campestre*

Juan R. Carlavilla, José L. Manjón

Department of Life Sciences (Botany área), University of Alcalá, 28871-Alcalá de Henares, Madrid, Spain

Corresponding author e-mail: josel.manjon@uah.es

Supplementary Fig. S1 - *Pleurotus eryngii* fruitingbody from *Eryngium campestre* labeled plant in 2004/2005.

Supplementary Fig. S2 - *Eryngium campestre* free plot inoculated with a piece of $7 \times 7 \times 14$ cm *Pleurotus eryngii* mycelium.

Supplementary Fig. S3 - *Pleurotus eryngii* spawn mycelium inoculum.

Supplementary Fig. S4 - Bottle inoculum production with *Pleurotus eryngii* primordia on the surface.

Supplementary Fig. S5 - Soil samples in *Eryngium campestre* fairy rings.

Supplementary Fig. S6 - Extraction on March 7, 2018 of healthy taproots of *Eryngium campestre*, in vegetative standstill, in an environment free of *Pleurotus eryngii* fructifications.

Supplementary Fig. S7 - Greenhouse inoculation of adult and wild plants of *Eryngium campestre* obtained from taproots in raised pots with legs.

Supplementary Fig. S8 - Semicircular seedbed of *Eryngium campestre* (control).

Supplementary Fig. S9 - Eryngium campestre vitroplant inoculation.

Supplementary Fig. S10 – a) Length of the IGS2 subregion in *P. eryngii* (samples taken from plants inoculated in 2014). Lane 1 shows a marker ladder (100-10000 bp); Lanes 2-6 show results for commercial strain from inoculated plants; Lanes 7-8 show results for wild fungal samples. b) Polymorphism in the IGS2 subregion; RFLP profiles produced with restriction enzyme BtgI. Lane 1 shows a marker ladder (100-1000 bp); Lanes 2 shows the results for a laboratory grown *P. eryngii* sample (control). Lanes 3-6 show the results for commercial strain from inoculated plants; Lanes 7-8 show results for wild fungal strains.

Supplementary Fig. S11 - Chlorotic leaves of *Eryngium campestre* and basidiocarps of *Pleurotus eryngii* cultivated in phytotron.

Supplementary Fig. S12 - Secondary and tertiary roots roots of adult *Eryngium campestre* plant colonized by *Pleurotus eryngii*.

Supplementary Fig. S13 - Gum formation in macroscopic cross section of an adult *Eryngium campestre* taproot inoculated plant.

Figure S14 - Total or partial destruction of two taproots of *Eryngium campestre* inoculated plant.

Figure S15 - Signs of infection in the root of seedlings.

Table S1 - Details of primers used in this study.

Primer	Locus	Sequence (5'-3')	Tm (°C)	Reference
ITS1F	ITS	CTTGGTCATTTAGAGGAAGTAA	55	Gardes and Bruns, 1993
ITS4	ITS	TCCTCCGCTTATTGATATGC	55	White et al., 1990
PeryITSF	ITS	CTGGGATGTAAACGTCTCGG	60	Own
PeryITSR	ITS	GCCAGACTCTATTCATGCGT	60	Own
IGS1_PeF	IGS1	CTATATTCCCCCTTTGTGATGTTGAACCC	65	Own*
IGS2_PeR	IGS2	CCCAAGCTGGAGTTCATTATGGTG	65	Own
5SRNAR	5SRNA	ACQGCATCCCGTCTGAT	60	Vilgalys and Gonzalez, 1990
invSR1R	SSU	ACTGGCAGAATCAACCAGGTA	60	Vilgalys et al., 1994

*From reverse complementary of Pleurotus_IGS1p_r2 (Kawai et al., 2008).

References

- Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes application to the identification of *mycorrhizae* and rusts. Molecular Ecology 2: 113–118. <u>https://doi.org/10.1111/j.1365-294X.1993.tb00005.x</u>
- Kawai G, Babasaki K, Hitoshi Neda H (2008) Taxonomic position of a Chinese *Pleurotus* "Bai-Ling-Gu": it belongs to *Pleurotus eryngii* (DC.: Fr.) Quél. and evolved independently in China. Mycoscience 49(1):75–87. <u>https://doi.org/10.1007/S10267-007-0392-2</u>
- Vilgalys R, Gonzales D (1990) Organization of ribosomal DNA in the basidiomycete *Thanatephorus praticola*. Current genetics 18:277–280. <u>https://doi.org/10.1007/BF00318394</u>
- Vilgalys R, Hopple Jr. JS, Jr, Hibbett DS (1994) Phylogenetic implications of generic concepts in fungal taxonomy: The impact of molecular systematic studies. Mycologica Helvetica 6:73-91.
- White TJ, Bruns TD, Lee S, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: PCR Protocols: a Guide to Methods and Applications (Innis MA, Gelfand DH, Sninsky J, White TJ, eds). Academic Press, San Diego, CA, pp 315–322.