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Abstract 
Truffles represent a resource of great value all over the world. The various species are widespread and occupy various 
habitats. Methods to identify their value in terms of marketing, cultivation, and the ecological–forestal field are needed. 
The traditional classification of Tuber species is based on their morphology; nevertheless, the macroscopic and 
microscopic characteristics of the fruiting body, spores, and ectomycorrhizae may be absent or insufficiently 
discriminating. This problem is amplified when dealing with valuable truffle species, which are often replaced by truffles 
with lower organoleptic qualities and commercial value. Today, molecular biology can help to correctly identify them 
through several widely used methods that are fast, specific, and sensitive. Molecular methods are mostly PCR-based, with 
primers designed on various targets, genes, or regions widely variable between species but sufficiently conserved within 
the same species. The DNA regions analyzed for identifying truffles include ribosomal internal transcribed spacer (ITS), 
ribosomal large subunit (LSU), β-tubulin, and EF-α elongation factor. This review summarizes the main and most reliable 
DNA-based molecular methods for identifying Tuber species. The methods are listed schematically and clearly for quick 
consultation and use in all areas of study in which monitoring, and verification of the species is essential. 
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Introduction 

Truffles are the fruiting bodies of ectomycorrhizal fungi belonging to the genus Tuber, order 
Pezizales, and division Ascomycota (Læssøe and Hasen, 2007; Trappe et al., 2009). They form an 
ectomycorrhizal symbiosis on the roots of different tree species, including beech, oak, birch, poplar, 
hazel, hornbeam, and pine (Harley and Harley, 1987). Some Tuber species are edible and appreciated 
for their intense and superb aroma (Pelùsio et al., 1995; Mello et al., 2006) acting as cue for animals 
which are thus able to spread their spores (Splivallo et al., 2011). 
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Amongst the known 200 Tuber species (Bonito et al., 2013), the most expensive species is 
Tuber magnatum Picco, whose ascomata retail prices vary from EUR 1000/kg to EUR 6000/kg in 
Italy but can reach higher prices outside of Italy (Hall et al., 2007). For these reasons, truffles 
represent a notable economic resource for Italy. In 2018 (latest data available), the economic value 
of truffle exports was around 49.2 million euros for fresh or frozen truffles and around 13.7 million 
euros for preserved truffles (Istat, 2019). 

Moreover, valuable edible truffles have a fundamental role in various economic fields, 
including gastronomy, tourism, retail markets, and truffle cultivation (Thomas, 2014; Büntgen et al., 
2017) and Europe accounts for 85% of the world truffle export market (Hamzić Gregorčič et al., 
2020). Another important aspect is the conservation of natural forests; for example, the European 
Tuber melanosporum Vittad. can grow in natural areas without the utilization of machinery and 
chemicals, and their plantations represent a firebreak thanks to low plantation densities, soil tilling, 
and, therefore, the herbicidal effect of the fungus (Büntgen et al., 2017). 

The unequivocal identification of the species is fundamental, as it guarantees all phases of 
mycorrhizal seedlings production, cultivation, trade, and the research experimental models setting up 
(Zambonelli et al., 2021). In the production of mycorrhized seedlings, it is essential to verify the 
identity of the truffles used for inoculation, the presence of the selected species, and to minimize the 
contamination risk of mycorrhized roots by competitive fungi. It is important to monitor the presence 
of specific Tuber mycelium in the greenhouse before and after transplanting in the field of 
mycorrhized seedlings to verify the presence of competitive fungi. For example, Pulvinula 
constellatio Berk. and Br. Boud. are ascomycete fungi that can create ectomycorrhizal infections in 
plants with Tuber spp. in greenhouses (Amicucci et al., 2001). Regarding commerce, T. 
melanosporum may be exchanged for the Chinese truffle Tuber indicum Cooke & Massee because it 
is morphologically very similar, but the latter has very low quality (Lazzari et al., 1995). T. magnatum 
can be the subject of fraud or confused with similar species, especially when the salient morphological 
features for identification are missing and at the mycorrhizal level where it is typically contaminated 
by other species (Iotti et al., 2012; Mello et al., 2001). Over the years, numerous researchers have 
defined the distinctive morphological characters of the species (Amicucci et al., 1998; Pacioni et al., 
1999; Mello et al., 2000; Paolocci et al., 2004; Kovács et al., 2006; Marozzi et al., 2020). Although 
morphological methods are fundamental, taxonomically and morphologically similar species may 
have different organoleptic and commercial value. Moreover, sometimes some distinctive 
morphological features are absent: immature ascomata lack spores, mycelia are poorly defined among 
the many species, mycorrhizae can lose their typical ornamentations, and cooking or other food 
preparation processes can alter their distinctive characteristics (Iotti et al., 2012). 

For these reasons, for decades, the ever-growing interest in this precious fungus has prompted 
many researchers to carry out increasingly refined research to find molecular markers capable of 
recognizing truffles in all phases of their life cycle. Numerous molecular markers have been 
developed to identify the most economically important truffle species to date (Gardes et al., 1991; 
Mello et al., 1999; Paolocci et al., 1999). The molecular methods have become indispensable to 
complement the traditional methods, overcome the lack of distinctive elements, increase the 
reliability of identification, and speed up the analysis. 

This review aims to illustrate and list the molecular methods used for identification. The 
development of the PCR technique enabled the molecular identification of truffles, starting with the 
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work by Gardes et al. in the 1990s (Gardes et al., 1991).  With the PCR technique, many researchers 
screened target DNA sequences conserved within a species, but variable among different species 
(Mello et al., 1999). 

The genome sequencing of different Tuber species has also provided various advantages by 
expanding the distinctive target DNA’s availability, hypervariable regions, and specific mating types 
of genes. One of the regions most used for evolutionary, diagnostic, and taxonomic studies is the 
ribosome internal transcribed spacer region (ITS) of nuclear rDNA. The ITS region is located 
between ribosomal rRNA 18S and 28S genes and includes the gene for the 5.8S rRNA (Jeandroz et 
al., 2008). ITS regions are present in multiple copies within the same genome, and the intraspecific 
homogeneity in Tuber is highly conserved; these characteristics made this target suitable for 
designing species-specific primers for several years (Ciarmela et al., 2022), although intragenomic 
variability has recently emerged in some fungi (Bradshow et al., 2023). 

Furthermore, β-tubulin is a good barcoding region for designing Tuber-genus-specific primers 
(Zampieri et al., 2009). At the same time, elongation factor 1-α was employed for designing new 
primer pairs specific for each Tuber phylogenetic lineage and for phylogeographic analyses (Leonardi 
et al., 2021). Finally, the microsatellite regions have also been studied to find species-specific 
markers. However, these targets have proved to be more versatile for characterizing intraspecific 
variability and have no longer been considered for these purposes (Amicucci et al., 2002; Murat et 
al., 2011; Molinier et al., 2013; Molinier et al., 2016). 

 
Molecular methods based on ITS region 

ITS (Internal transcribed spacer) is a non-coding ribosomal DNA region interposed to ribosomal 
genes 18S e 28S, as shown in Figure 1, and repeated in clusters in all eukaryote genomes. 

 

 
Fig. 1. – Scheme of the ITS region of fungi. 

 
The repeated units of transcribed rDNA regions are separated by intergenic spacers (IGS) 

(Ciarmela et al., 2002; Jeandroz et al., 2008). An IGS separates the large subunit (LSU) rRNA gene 
(encoding 5.8S and 28S rRNA) in one repeat from the small subunit (SSU) rRNA gene (encoding 
18S rRNA) in the adjacent downstream repeat (Ciarmela et al., 2002; Jeandroz et al., 2008). This IGS 
region, expressing extremely intraspecies variability, allows studies of intraspecies and taxonomic 
variability but is not a suitable target for developing species-specific markers (Ciarmela et al., 2002). 

Restriction Length Fragment Polymorphism Analyses (RFLP) 
ITS may present polymorphisms of length and sequence and is amplifiable by using universal primers 
(White et al., 1990; Bruns et al., 1991; Gardes et al., 1993). The length of the ITS region is quite 
similar between the different species, while the restriction fragment length polymorphism analysis 
(RFLP) produces characteristic profiles. The ITS amplicons are digested with specific restriction 
endonucleases selected from the restriction maps of the ITS sequences of each species to detect 
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polymorphisms. The digested DNA is separated by gel electrophoresis, from which the pattern RFLP 
is produced (Bertini et al., 1998; Paolocci et al., 1999; Bertini et al., 2006). The variable lengths of 
cleavage fragments are characteristic of a sequence of DNA. The restriction analysis of the ITS region 
allows obtaining species-specific patterns for different species of truffles: electrophoretic separation 
allows the comparison of restriction profiles produced by different species. The results of this method 
are obtained quickly and are easy to interpret. Table 1 summarizes the enzymes that can be used to 
identify white truffle species. 
 

Table 1 - Enzymes specific for white truffle species. 

Species Enzymes       

 MspI RsaI AvaII EcoRI NcoI HinfI TaqI MboI ClaI AluI KpnI StuI SfiI ScaI 

T. magnatum + + + + + + + - + - + + + - 

T. borchii + + + + - + + - + + - - - - 

T. puberulum + + + - - - - - - - - - - + 

T. dryophilum + + + - + - - - - - - - - - 

T. maculatum + + + - - + - + - + - - - - 

Species-specific enzyme = +; non-species-specific enzyme = - 
 

As regards the species T. melanosporum and T. indicum, the research of Paolocci et al. reports 
the possibility of distinguishing these two species through ITS restriction analysis using the RsaI or 
SspI enzymes (Paolocci et al., 1997). The sizes of the restriction fragments, which are useful for 
recognition, are shown in Table 2. 

 

Table 2 - ITS size fragments by RsaI and SspI 

Species Size fragments (bp) by enzyme RsaI Size fragments (bp) by enzyme SspI 

T. melanosporum 191/429 Not cut 

T. indicum B1 123/497 418/202 

T. indicum B2 Not cut 418/202 

T. indicum A 153/276/195 376/248 

 

ITS specific primers 
The ITS regions of the different Tuber species were sequenced, analyzed, and aligned through a 
dedicated computer program. The sequence alignment analyses allowed the detection of species-
specific regions, and with the support of web platforms, specific primer pairs were selected, 
respecting the specificity of pairing, the length, the GC content, and avoiding inverted repeated 
sequences. Table 3 lists the specific primer pairs available for Tuber species to date. 
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Table 3 - List of specific primer pairs available for Tuber species and conditions used for PCR analysis. 
Tuber species  Primer name Primer sequence (5’-3’) Frag. length 

(bp) 
Thermocycling 
parameters 

Accession No. 
GenBank 

Reference 

T. magnatum 
 
 
 

SCAR 
(RAPD) 

TAR I CCCCAACGCGTAAAAGAGTA 145 25 cycles: 94 °C 
45 s, 53 °C 45 s 

--- Amicucci et al., 1997 
TAR II CGTATCGGTGTCTTGCCAGTG 

ITS- 
rDNA 

TmagI GGATGCGTCTCCGAATCCTGAA
T 

173 25 cycles: 94 °C 
20 s, 62 °C 15 s 

AF003911 Amicucci et al., 1998 
 

TmagII TCGGGCCCTTTCTCAGACTGCTG 

ITS- 
rDNA 

P7 TCCTACCAGCAGTCTGAGAAAG
GGC 

434 40 cycles: 94 °C 
45 s, 65 °C 45 s, 
72 °C 45 s 

--- Mello et al., 1999; 
Mello et al. 2006 

M3 
 

TGAGGTCTACCCAGTTGGGCAG
TGG 

ITS- 
rDNA 

MG09 I TCACTTGGGGCGTCCGAGAT 158 30 cycles: 94 °C 
15 s, 52 °C 15 s 

--- Rossi et al., 2000 
MG09 II ACTGCTGGAAACGGGGAATG 

ITS- 
rDNA 

TmgITS1for GCGTCTCCGAATCCTGAATA 106 25 cycles: 95 °C 
20 s, 60 °C 30 s, 
72 °C 40 s 

--- Iotti et al., 2012 
TmgITSrev ACAGTAGTTTTTGGGACTGTGC 

ITS- 
rDNA 

Tmag3 TTAACTGTTTAAGTTTGTCAGGC 151 35 cycles: 94 °C 
30 s, 56 °C 30 s, 
72 °C 2 min 

FM205629 Rizzello et al., 2012  
Tmag4 CCTGAATATCTCCTGTGTACCAT 

ITS- 
rDNA 

ITSMAGN GTCACTGAAAACCCACTCACG 230 25 cycles: 95 °C 
30 s, 63 °C 30 s, 
72 °C 45 s 

AF325174 Rubini et al., 2001 
 ITSBACK3 TGAGGTCAACCCAGTTGGACAG

T 
ITS- 
rDNA 

TmagI GGATGCGTCTCCGAATCCTGAA
T 

635 30 cycles: 94 °C 
20 s, 62 °C 15 s, 
72 °C 30 s 

AF003911 Amicucci et al., 2000 

ITS4 TCCTCCGCTTATTGATATGC 
β-tubulin Tubmagnf CCTCCCAATTTGCAATACAC 282 25 cycles: 94 °C 

30 s, 61 °C 30 s, 
72 °C 30 s 

FN252812 Zampieri et al., 2010 
Elytubr AAAGACGAAGTTATCTGGCCTG

A 
T. borchii ITS- TboI TGTATGGGATGCCCTATCGGAC 397 30 cycles: 94 °C AF003920 Amicucci et al., 1998 
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rDNA T 20 s, 55 °C 15 s, 
72 °C 30 s TboII CTATTACCACGGTCAACTTC 

ITS- 
rDNA 

TBA TGCCCTATCGGACTCCCAAG 432 40 cycles: 94 °C 
45 s, 65 °C 45 s, 
72 °C 45 s 

--- Mello et al., 1999 
TBB GCTCAGAACATGACTTGGAG 

ITS- 
rDNA 

rTboII GAAGTTGACCGTGGTAATAG  
185 
 

30 cycles: 94 °C 
20 s, 62 °C 15 s, 
72 °C 30 s 

AF003920 Amicucci et al., 2000 
ITS4 TCCTCCGCTTATTGATATGC 

SCAR 
(RAPD) 

TB I AGAGAATACATGCGGTAGTGT 363 30 cycles: 94 °C 
30 s, 58 °C 30 s, 
72 °C 40 s 

U94390 Bertini et al., 1998 
TB II CTCGCTTGGAGATAATAACAG 

SCAR 
(TBF gene) 

TBF1for 
 

TCACCAAGCACTAACTCCTCTCT 699 30 cycles: 94 °C 
30 s, 53 °C 30 s, 
72 °C 45 s 

U83996.1 De Bellis et al., 1998  

TBF2rev CCAAACCGAATCAAACAACTAA
T 

T. maculatum ITS- 
rDNA 

TmacI 
 

GACACAGGCTCCCGATAAAACA
C 

407 25 cycles: 94 °C 
20 s, 62 °C 15 s, 
72 °C 30 s 

AF003909 Amicucci et al., 1998 

TmacII CAGCAGCACTGATAGCCCCG 
rTmacII CGGGGCTATCAGTGCTGCTG 225 30 cycles: 94 °C 

20 s, 62 °C 15 s, 
72 °C 30 s 

AF003909 Amicucci et al., 2000 
ITS4 TCCTCCGCTTATTGATATGC 

T. dryophilum 
 
 

ITS- 
rDNA 

TdryI ATCGGGCTCCCAAGCAAAACA 510 30 cycles: 94 °C 
20 s, 62 °C 15 s, 
72 °C 30 s 

AF003917 Amicucci et al., 1998 

TdryII TCTACTACCATGGTTCACTTT 

T. puberulum ITS- 
rDNA 

TpuI TCTGTTACCAGGGTCCACATT 368 30 cycles: 94 °C 
15 s, 55 °C 30 s 

AF003918 Amicucci et al., 1998 
TpuII GGCTTCTGGGTTGAGGTGTTT 

ITS- 
rDNA 

TpuI TCTGTTACCAGGGTCCACATT 560 30 cycles: 94 °C 
20 s, 62 °C 15 s, 
72 °C 30 s 

AF003918 Amicucci et al., 2000 
ITS4 TCCTCCGCTTATTGATATGC 

T. rufum ITS- 
rDNA 

Ru1f TGCTTTCCCAGGTGGTTGG 566 30 cycles: 94 °C 
20 s, 63 °C 20 s, 

AF106892, 
AY112894 

Iotti et al., 2007 
ITS4 TCCTCCGCTTATTGATATGC 
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Ru2f TTGC TTTCCCAGGGAATTGG 572 72 °C 30 s 

ITS4 TCCTCCGCTTATTGATATGC 
T. macrosporum ITS- 

rDNA 
Tmacr For CGTCGCTCATCAAAGCAGTC 248 33 cycles: 94 °C 

20 s, 61 °C 20 s, 
72 °C 20 s 

AF106885, 
FM205663, 
FM205664, 
AY112895 

Benucci et al., 2011 

Tmacr Rev CCGCCAGTACCACCAGGAG 

T. melanosporum 
 
 
 
 

ITS- 
rDNA 

ITSML TGGCCATGTGTCAGATTTAGTA 436 23 cycles: 94 °C 
30 s, 63 °C 30 s, 
72 °C for 45 s 

U89359 Paolocci et al., 1997 
ITS4LNG TGATATGCTTAAGTTCAGCGGG 

Mela-fw ACGACGGACTTTATAAACGGTT
ATAA 

141 30 cycles: 95 °C 
20 s, 60 °C 60 s 

U89359 Schelm et al., 2020 

Mela-rv AGCGGGTATCCCTCCCTGATT 
ITS- 
rDNA 

T.mel_for  TTGCTTCCACAGGTTAAGTGA 351 30 cycles: 94 °C 2 
min, 55 °C 30 s, 
72 °C 30 s 

GQ917052 
 

Bonito, 2009 
T.mel_rev TAAAGTCCGTCGTTCATGC 

T. brumale ITS- 
rDNA 

ITSB CAATGTCAGAGCCAATCTAATG
C 

700 23 cycles: 94 °C 
30 s, 63 °C 30 s, 
72 °C 45 s 

AF001010 Paolocci et al., 1999 

ITS4LNG TGATATGCTTAAGTTCAGCGGG 
T. indicum ITS- 

rDNA 
ITSCHCH AACAACAGACTTTGTAAAGGGT

TG 
140 23 cycles: 94 °C 

30 s, 63 °C 30 s, 
72 °C 45 s 

U89360, 
U89361, 
U89362 

 
Paolocci et al., 1999 
 ITS4LNG TGATATGCTTAAGTTCAGCGGG 

Indi-fw AACAACAGACTTTGTAAAGGGT
T 

146 30 cycles: 95 °C 
20 s, 60 °C 60 s 

U89359 Schelm et al., 2020 

ITS4LNG TGATATGCTTAAGTTCAGCGGG 
T. 
aestivum/uncinatum 

ITS- 
rDNA 

UncI TGGGCCGCCGAAAACTTG 405 27 cycles: 95 °C 1 
min, 59 °C 45 s, 
72 °C 45 s 

AJ492199-
210 

Mello et al., 2002 
UncII CTGACGAGATGCCCCGGA 

Tu1sekvF AGAGCACCAAACCACAG 496-502 34 cycles: 95 °C 
60 s; 52, 59 or 

AJ492216 
AJ888120 

Grindler et al., 2011 

https://doi.org/10.6092/issn.2531-7342/19004
https://www.ncbi.nlm.nih.gov/nuccore/ddbj-embl-genbank/GQ917052


Amicucci et al. 
https://doi.org/10.6092/issn.2531-7342/19004                                                                                                                                               Italian Journal of Mycology 53 (2024): 45 - 64 
________________________________________________________________________________________________________________________________________________________________________________________________________________________________ 

 
52 

 

Tu2sekvR ACCACAGCGTCTACCAA 63.5 °C 45 or 40s, 
72°C 45 or 40 s 

Multiplex: 
 
T. magnatum,  
T. puberulum,  
T. maculatum,  
T. borchii 

ITS- 
rDNA 

TmagI 
 

GGATGCGTCTCCGAATCCTGAA
T 

635 30 cycles: 94 °C 
20 s, 62 °C 15 s, 
72 °C 30 s 

AF003911, 
AF003918, 
AF003909, 
AF003920 

Amicucci et al., 2000 

TpuI TCTGTTACCAGGGTCCACATT 560 
rTmacII CGGGGCTATCAGTGCTGCTG 225 
rTboII GAAGTTGACCGTGGTAATAG 185 
ITS4 
(Reverse) 

TCCTCCGCTTATTGATATGC  

Multiplex: 
 
T. melanosporum, 
T. brumale, 
T. indicum 
 

ITS- 
rDNA 

ITSML CGTCGCTCATCAAAGCAGTC 440 23 cycles: 94 °C 
30 s, 63 °C 45 s, 
72 °C 45 s 

U89359, 
AF001010 
U89360-62 

Paolocci et al., 1999 
ITSB CAATGTCAGAGCCAATCT 700 
ITSCHCH AACAACAGACTTTGTAAAGGGT

TG 
140 

ITS4LNG 
(Reverse) 

TGATATGCTTAAGTTCAGCGGG  
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In some cases, such as in soil analyses, the PCR reaction, albeit with specific primers, may not 
show the presence of the species of interest due to the high amount of different species in the soil. In 
this case, Nested PCR can be used. A first amplification can be carried out with ITS universal primers, 
and subsequently, a second reaction can be performed using as a template a small amount of the first 
reaction product and a pair of primers internal to the previous target (Green and Sambrook, 2019). 

 
Table 4 - List of specific primers and probes for qPCR for truffles. 

Species Primer/Probe Sequence 5’ – 3’ Product 
size 

Cycles Reference 

T. melanosporum Mela – fw ACGACGGACTTTATAAACGGTTA
TAA 

141 95 °C 4 min; 30 
cycles: 95 °C 20 s, 
60 °C 60 s; 72 °C 10 
min 

Schelm et al., 
2020 

Mela – rv AGCGGGTATCCCTCCCTGATT 

probe Cy5–
GACCTGGATCAGTCACAAGTCTT
GTCTGGT-BHQ2 

     

Tmelfwd TCTCTGCGTATCACTCCATGTTG 61 95 °C 30 s; 40 
cycles: 95 °C 5 s, 60 
°C 34 s 

Parladé et al., 
2013 Tmelrev TCCCACAGGTGCCAGCAT 

STQTmel 6FAM-TTCCACAGGTTAAGTGAC-
MGB 

     

T.mel_for* TTGCTTCCACAGGTTAAGTGA 351 95 °C 10 min; 45 
cycles: 95 °C 30 s, 
56 °C 30 s, 72 °C 30 
s, 95 °C 15 s, 60 1 
min, and 95 °C 15 s 

Zampieri et al., 
2012 

T.mel_rev* TAAAGTCCGTCGTTCATGC 

      

T. magnatum TmgITS1for GCGTCTCCGAATCCTGAATA 106 95 °C 6 min; 25 
cycles: 95 °C 20 s, 
60 °C 30 s, 72 °C for 
40 s; 72 °C 7 min 

Iotti et al., 2012  

TmgITS1rev ACAGTAGTTTTTGGGACTGTGC 

TmgITS1prob TGTACCATGCCATGTTGCTT 

     

TmgITS2for AAACCCACTCACGGAATCAC 99 95 °C 6 min; 25 
cycles: 95 °C 20 s, 
60 °C 30 s, 72 °C for 
40 s; 72 °C 7 min 

Iotti et al., 2012 

TmgITS2rev CGTCATCCTCCCAATGAAA 

TmgITS2prob GTACCAAGCCACCTCCATCA 

     

Tmag3* TTAACTGTTTAAGTTTGTCAGGC 151 95 °C 10 min; 40 
cycles: 95 °C 30 s, 
56 °C 30 s, 72 °C 30 
s 

Rizzello et al., 
2012 

Tmag4* CCTGAATATCTCCTGTGTACCAT 

      

T. indicum/ 
T.himalayense 

Indi – fw AACAACAGACTTTGTAAAGGGTT 146 95 °C 5 min; 30 
cycles: 95 °C 20 s, 
60 °C 60 s; 72 °C 10 
min 

Schelm et al., 
2020 ITS4LNG TGATATGCTTAAGTTCAGCGGG 

probe HEX-
GGACCTAGATCAGTCACAAGTCA
TGTCTGG-BHQ2 

* SYBR Green Reaction 
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In the context of identification, quantitative Polymerase Chain Reaction (qPCR) is therefore 
convenient for studying the truffle distribution in the soil to clarify the unknown aspects of their 
biology, the unresolved problems in productivity, and the factors leading to the spreading and 
development of the mycelium in the soil (Suz et al., 2006; Zampieri et al., 2010). The quantification 
of a specific species of Tuber is even more helpful to achieve such purposes. Table 4 lists the specific 
primers and probes for truffles designed to date. 

The specific primers selected can be employed to set up a multiplex PCR. A reaction is carried 
out with a set of primers to analyze complex samples in which DNA mixtures from different species 
may be present simultaneously. The multiplex PCR allows the simultaneous identification of different 
truffle species in a single amplification reaction. This method has the advantage of saving time, 
reagents, and amount of target DNA. In addition, at the same time, it is possible to identify truffles 
and related ectomycorrhiza in a single amplification (Paolocci et al., 1999; Amicucci et al., 2000). 
Therefore, multiplex PCR is useful for studying the ecology of different species of Tuber and 
symbiotic relationships (Paolocci et al., 1999). The selection of primers must, however, be very 
accurate to work with the optimal amplification conditions; in particular, primers must have similar 
melting temperatures and must not hybridize with each other. 
 
RAPD technique and SCAR markers 

RAPD (Random Amplified Polymorphic DNA) is a modified PCR technique in which a single and 
short (generally 10 bp) random oligonucleotide is used. The annealing temperature is very low to 
allow the binding of the primer to the genomic DNA (Williams et al., 1990; Babu et al., 2021). The 
result of this amplification is a specific pattern of the individual that depends on the distribution of 
complementary sequences to those of the primer along the genome. RAPD is cost-effective, quick, 
and easy, and no information about the target organism’s genome is needed. Through random-primed 
amplification, nucleotide sequence polymorphisms are detected simultaneously for multiple samples. 
Despite its great potential, this method has significant criticalities (Williams et al., 1990). These 
include, for example, the high risk of contamination and the low reproducibility. Moreover, RAPD 
markers are not locus-specific because they are all dominant. For this reason, the nucleotide profiles 
obtained with random primers are used to identify species-specific markers; once they have been 
detected, they are purified from the agarose gel, and sequenced, and primers are drawn from them to 
be used in specific PCR. The markers obtained from RAPD fragments are named SCARs (Sequence 
Characterized Amplified Region) and are locus-specific PCR-based markers (Potenza et al., 1994; 
Amicucci et al., 1997; Bertini et al., 1998; Paolocci et al., 2000; Rossi et al., 2000; Mello et al., 2006). 
The developed primer pairs specific for Tuber spp. are listed in Table 3.  

RAPD analysis was among the first to be used to study the genetic diversity among Tuber spp. 
because of its advantages. Thanks to the use of specific markers, the technique becomes strategic for 
the identification of Tuber spp. in all stages of the biological cycle, so it allows the detection of 
possible commercial frauds and guarantees certified products. 
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Methods for DNA extraction-free analysis 

A DNA isolation procedure must precede all the methods described. Generally, the methods are 
laborious and time-consuming. In recent years, direct PCRs have been developed to skip the isolation 
phase and immediately apply the selected PCR. 

In particular, in 2005, Iotti et al. developed a new technique for identifying ectomycorrhizae 
directly, quickly, and precisely by PCR omitting the DNA extraction. The process consists of adding 
BSA to stabilize the PCR reactions and prevent the adhesion of enzymes. The mycorrhized tips of 
each sample were separated from other tissues and cleaned. The ECM manipulation was done in Petri 
dishes containing sterile distilled water to prevent PCR contamination. A small portion of each 
morphotype was then transferred directly to the PCR tube containing sterile water. Analysis was 
performed on fresh and frozen (-80 °C) mycorrhizae (Iotti et al., 2005). This method minimizes 
contamination risks and doesn’t use harmful substances. 

Furthermore, for successful truffle cultivation, it is crucial to use the appropriate species of 
truffle for the inoculum. The inoculum used for truffle cultivation comes from truffle fruitbodies. It 
is a spore substrate, so it is necessary to have a molecular method for identifying spores.  

The protocol of Bonito consists in a direct amplification from fruitbodies of T. melanosporum 
(Bonito, 2009). Fresh fruitbodies were cut and dried, then they were amplified by direct PCR using 
the T.mel_for – T.mel_rev primer set (Bonito, 2009).  

These methods speed up the identification process and also require only minimal quantities of 
starting material, facilitating analysis when only a few mycorrhizae, or a few spores, are available. It 
also has the advantage of safeguarding the carpophore which will then eventually be placed on the 
market. Preserving the original structure of the truffle preserves its quality and improves 
environmental sustainability. 

 
Applications in processed truffle food 

To ensure high-quality Tuber species that are used in food products, molecular techniques are 
necessary for accurate identification. These applications can be used in truffle traceability, from 
harvest to table. The ability to record the origin and route of each truffle allows for greater 
transparency in the supply chain. This not only ensures product quality but also promotes ethical and 
sustainable business practices. The combined use of molecular markers and advanced analytical 
techniques allows truffles to be traced at the molecular level in food, ensuring the quality and 
authenticity of the final product. It is important in the food sector to combat counterfeiting and ensure 
that consumers receive authentic, high-quality products. The applications of molecular methods to 
identify truffle species in food products are exposed in Amicucci et al. (2002), in Rizzello et al. 
(2012), and also in Tejedor-Calvo et al. (2023). These papers show specific cases of identification in 
processed truffle-based food products: cream, fresh pasta, truffle-flavored rice, oil, salt, and cheese. 
In one specific case, a species of Chinese truffle was detected, rather than T. melanosporum, as 
incorrectly reported on the package (Amicucci et al., 2002). 

Commercial fraud is a big problem in the marketing of truffles and mycorrhizal seedlings. 
However, it is even more prevalent in truffle-based food products because the temperatures and 
treatments involved in the processing of truffles can damage the elements that are important for their 
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identification, which represent a fundamental and unique tool in the truffle industry. Truffle-based 
food products represent a significant portion of the overall truffle market. 

 
Whole-genome sequencing  

Despite the complexity and high cost, genomics has become an applied science in the fungal world 
as well, aimed at better understanding the biology and characterizing the species in a more definite 
way. The genomic sequencing technique aims at predicting and annotating the set of genes present in 
the organism and also the non-coding sequences (Pareek et al., 2011). In fact, genome sequencing 
includes the sequencing of the entire exome (i.e., all coding regions of each gene) and all intergenic 
regions, which represent the majority of DNA (Kuo et al., 2014). The knowledge of the genome 
determines its structure and provides useful information to understand the function of genes (Pareek 
et al., 2011; Köser et al., 2012). In addition, it lays the foundations for understanding the interactions 
between the organism and the environment in which it lives and other organisms, as well as the 
biochemical and transcriptomics properties, which is why it represents a turning point in 
understanding the biology of mycorrhizal fungi such as truffles.  

The first sequences were based on the application of the method based on Sanger biochemistry, 
which, over the years, has undergone changes and innovations, resulting in the achievement of a 
large-scale automated sequencing method. The first fungal genomes were sequenced via the Sanger 
method but with the Whole-Genome Shotgun approach (Heather and Chain, 2016; Gryganskyi et al., 
2023). The WGS approach is a more advantageous method than clone-by-clone because it greatly 
reduces sequencing times and costs. DNA is initially fragmented into several random segments of 
defined sizes, which are then sequenced using the Sanger method (Köser et al., 2012). Many 
fragmentations and sequencing cycles are performed to obtain high overlapping DNA fractions that 
allow the reconstruction of the entire genome through alignment and assembly programs. This 
strategy has the advantage of generating sequence reads from both insert ends and it produces highly 
redundant sequence coverage (Edwards et al., 1990). The first fungal genome to be completely 
sequenced was Saccharomyces cerevisiae in 1996; the sequencing of the first filamentous fungus, 
Neurospora crassa, was completed in 2003 (Galagan et al., 2003; Otero et al., 2010). 

The interest in sequencing the genomes of truffles was born out of simple basic knowledge, but 
it has had and will continue to have enormous importance in deepening knowledge of its biology. It 
has provided and will provide fundamental knowledge for the study of processes related to its 
biological cycle: the establishment of symbiosis with the plant, carpophore formation, and diffusion 
of mycelium in the soil. Furthermore, whole-genome sequencing will allow the identification of new 
targets useful for identification. It will also be able to provide information on the process of synthesis 
of aromas, which are highly appreciated and distinctive among the different species. Table 5 provides 
the main information on the truffle genomes characterized to date, with the related links to access 
them.  

More organisms belonging to Tuber are being sequenced, in addition to the already published 
genomes which started with that of T. melanosporum (Martin et al., 2010). As part of the "1000 
Fungal Genomes Project (1KFG): Deep Sequencing of Ecologically-relevant Dikarya" (CSP1974), 
the genome and transcriptome of Tuber canaliculatum Gilkey (a type of truffle native to eastern North 
America) and Tuber gibbosum Harkn. (Oregon white truffle, California, Washington and British 
Columbia) have been sequenced (Bonito et al., 2010; Bonito et al., 2013; Benucci et al., 2016). 
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Table 5 - Tuber genomes sequenced. 

Tuber species Size 
Mb 

Predicted 
protein-
coding 
gene 
number 

Repeated 
sequences % 

or Transposable 
elements 

Web site Reference 

T. melanosporum 125 7496 57.73 www.genoscope.cns.fr/tuber  Martin et al., 
2010 

T. magnatum 192 9,433 58 https://mycocosm.jgi.doe.gov/Tubma
1/Tubma1.home.html  

Murat et al., 
2018b 

T. borchii 97.18 12,346 47,12 http://genome.jgi.doe.gov/Tubbor1  Murat et al., 
2018a 

T. aestivum 145 9,344 49.5 https://mycocosm.jgi.doe.gov/Tubae1
/Tubae1.home.html  

Murat et al., 
2018b 

T. brumale 171.44 12,380 61,5 https://mycocosm.jgi.doe.gov/Tubbr1
_1/Tubbr1_1.home.html  

Morin et al., 
2021 

T. indicum 110.49 11,870 47,1 https://mycocosm.jgi.doe.gov/Tubbr1
_1/Tubbr1_1.home.html  

Morin et al., 
2021 

 
Conclusions and perspectives  

Truffles belong to the genus Tuber and are among the most prized mushrooms in the world. Trade, 
agriculture, and research sectors have developed around this valuable product, and due to its 
economic value, it is important to guarantee its origin, safety, traceability, and authenticity. Many 
researchers are studying to understand the unknown aspects of truffle biology and to develop effective 
cultivation methods, especially for T. magnatum, which is among the most precious species. The 
application of molecular biology techniques is useful not only for these purposes but also for 
certifying seedlings, guaranteeing the marketed products, and monitoring the presence of the species 
of interest. 

This review presents the molecular targets and methods for rapidly identifying and quantifying 
the most important Tuber species. It is a scheme of molecular tools that researchers and others can 
apply to unambiguously identify mycorrhizae, mycelial cultures, and carpophores. It is essential to 
guarantee the reliability of the study models and the mycorrhization systems and to evaluate the 
presence of the precious Tuber in food products. All this is fundamental for evolutionary and 
ecological studies, studies on the mechanisms underlying the biological cycle, to understand the 
interactions with other microorganisms and the reactions to biotic and abiotic factors. 

We reported the validated and most cited protocols in scientific identification papers, but in 
perspective, the emerging technique of digital PCR has recently begun to be applied to environmental 
studies; it can provide a very sensitive identification and quantification method, and many researchers 
are already working on it, using the same targets and primers, but with much greater sensitivity. The 
principle of high-level sample partitioning ensures that dPCR results are precise and accurate, even 
when starting from very low target copy numbers (Whale et al., 2013).  The proposed methods 
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summarized in this review may not be exhaustive for taxonomic studies, as some species, other than 
Tuber, have shown intraspecific variability of some targets used. 

Moreover, new sequencing technologies will make it easier to discern the genomes of many 
other species of Tuber in addition to those already sequenced, providing new knowledge useful for 
identifying and characterizing the species. There will also be new fascinating strategies with the 
advent of artificial intelligence (AI) and machine learning through software applications capable of 
quickly and accurately recognizing species-specific patterns in DNA sequences (Picek et al., 2022). 
This provides significant potential for studying and understanding mycology and opening up new 
applications in agriculture, industry, and medicine (Picek et al., 2022). 
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