Laser microdissection as a tool to study fungal gene expression in mycorrhizal endosymbioses

Authors

  • Raffaella Balestrini Institute for Sustainable Plant Protection - CNR, Turin
  • Silvia Perotto Department of Life Sciences and Systems Biology, University of Turin
  • Valentina Fiorilli Department of Life Sciences and Systems Biology, University of Turin

DOI:

https://doi.org/10.6092/issn.2531-7342/11867

Keywords:

AM symbiosis, cell-specificity, LMD , gene expression, nutrient exchange, orchid symbiosis

Abstract

Laser microdissection (LMD) is a microscopy technique that, through the collection of specific cell-type populations from sections of heterogeneous tissues, allows the subsequent extraction of nucleic acids as well as primary and secondary metabolites. In plants, LMD was widely used to study cell-specific gene expression during symbiotic interactions with other organisms, including mycorrhizal fungi. In particular, LMD was extensively used to study cell-specificity in gene expression profiles in arbuscular mycorrhizal (AM) and orchid mycorrhizal (ORM) interactions. These earlier studies were mainly focused on the identification of functional markers in plant cells containing intracellular fungal structures, i.e. arbuscules, the typical structures in AM, and coils, typical of ORM. Several plant and fungal genes coding for nutrient transporters were identified in these cells thanks to LMD, suggesting that symbiotic nutrient exchange is cell specific. In the absence of a stable transformation protocol for the expression of tagged genes in the mycorrhizal fungal partner, LMD protocols represent a useful tool to study fungal gene expression in specific cell-type populations inside symbiotic plant tissues.

References

Balestrini R, Gomez-Ariza J, Lanfranco L, Bonfante P (2007) Laser microdissection reveals that transcripts for five plant and one fungal phosphate transporter genes are contemporaneously present in arbusculated cells. Molecular Plant Microbe Interaction 20:1055-106210. https://doi.org/10.1094/MPMI-20-9-1055

Balestrini R, Nerva L, Sillo F, Girlanda M, Perotto S (2014) Plant and fungal gene expression in mycorrhizal protocorms of the orchid Serapias vomeracea colonized by Tulasnella calospora. Plant Signaling & Behavior 9:11. https://doi.org/10.4161/15592324.2014.977707

Balestrini R, Bonfante P (2005). The interface compartment in arbuscular mycorrhizae: a special type of plant cell wall? Plant Biosystems 139:8-15. https://doi.org/10.1080/11263500500056799

Balestrini R, Lumini E (2018) Focus on mycorrhizal symbioses. Applied Soil Ecology 123:299-304. https://doi.org/10.1016/j.apsoil.2017.09.001

Balestrini R, Fiorilli V (2020) Laser microdissection as a useful tool to study gene expression in plant and fungal partners in AM symbiosis. In: Arbuscular Mycorrhizal Fungi: Methods and Protocols, Series Methods in Molecular Biology (N Ferrol, L Lanfranco, eds), Protocol Lab. Heidelberg, Germany, Springer. https://doi.org/10.1007/978-1-0716-0603-2_13

Belmondo S, Fiorilli V, Pérez-Tienda J, Ferrol N, Marmeisse R, Lanfranco L (2014) A dipeptide transporter from the arbuscular mycorrhizal fungus Rhizophagus irregularis is upregulated in the intraradical phase. Frontiers in Plant Science 5:436. https://doi.org/10.3389/fpls.2014.00436

Berruti A, Borriello R, Lumini E, Scariot V, Bianciotto V, Balestrini R (2013) Application of laser microdissection to identify the mycorrhizal fungi that establish arbuscules inside root cells. Frontiers in Plant Science 4:135. https://doi.org/10.3389/fpls.2013.00135

Calabrese S, Pérez-Tienda J., Ellerbeck, M., Arnould C, Chatagnier O, Boller T, Schüssler A, Brachmann A, Wipf D, Ferrol N, Courty PE (2016) GintAMT3 – a Low-Affinity Ammonium Transporter of the Arbuscular Mycorrhizal Rhizophagus irregularis. Frontiers in Plant Science 7:679. https://doi.org/10.3389/fpls.2016.00679

Chandran D, Inada N, Hather G, Kleindt CK, Wildermuth MC (2010) Laser microdissection of Arabidopsis cells at the powdery mildew infection site reveals site-specific processes and regulators. Proceedings of the National Academy of Sciences of the United States of America 107:460-465. https://doi.org/10.1073/pnas.0912492107

Fiorilli V, Lanfranco L, Bonfante P (2013) The expression of GintPT, the phosphate transporter of Rhizophagus irregularis, depends on the symbiotic status and phosphate availability. Planta 237: 1267-1277. https://doi.org/10.1007/s00425-013-1842-z

Fiorilli V, Belmondo S, Khouja HR, Abbà S, Faccio A, Daghino S, Lanfranco L (2016) RiPEIP1, a gene from the arbuscular mycorrhizal fungus Rhizophagus irregularis, is preferentially expressed in planta and may be involved in root colonization. Mycorrhiza 26:609-621. https://doi.org/10.1007/s00572-016-0697-0

Fiorilli V, Volpe V, Balestrini R (2019) Microscopic techniques coupled to molecular and genetic approaches to highlight cell-type specific differences in mycorrhizal symbiosis. In: Methods in Rhizosphere Biology Research (Reinhardt D, Sharma A.K., eds), Rhizosphere Biology. Singapore, Springer, pp 197-225. https://doi.org/10.1007/978-981-13-5767-1_11

Fochi V, Chitarra W, Kohler A, Voyron S, Singan VR, Lindquist EA, Barry KW, Girlanda M, Grigoriev IV, Martin F, et al. (2017a) Fungal and plant gene expression in the Tulasnella calospora–Serapias vomeracea symbiosis provides clues about nitrogen pathways in orchid mycorrhizas. New Phytologist 213:365-379. https://doi.org/10.1111/nph.14279

Fochi V, Falla N, Girlanda M, Perotto S, Balestrini R (2017b) Cell-specific expression of plant nutrient transporter genes in orchid mycorrhizae. Plant Science 263:39-45. https://doi.org/10.1016/j.plantsci.2017.06.015

Gaude N, Schulze WX, Franken P, Krajinski F (2012) Cell type-specific protein and transcription profiles implicate periarbuscular membrane synthesis as an important carbon sink in the mycorrhizal symbiosis. Plant Signal Behavior 7:461-4. https://doi.org/10.4161/psb.19650

Gaude N, Bortfeld S, Erban A, Kopka J, Krajinski F (2015) Symbiosis dependent accumulation of primary metabolites in arbuscule-containing cells. BMC Plant Biology 15:234. https://doi.org/10.1186/s12870-015-0601-7

Gomez SK, Javot H, Deewatthanawong P, Torres-Jerez I, Tang Y, Blancaflor EB, Udvardi MK, Harrison MJ (2009) Medicago truncatula and Glomus intraradices gene expression in cortical cells harboring arbuscules in the arbuscular mycorrhizal symbiosis. BMC Plant Biology 9:10. https://doi.org/10.1186/1471-2229-9-10

Guether M, Neuhäuser B, Balestrini R, Dynowski M, Ludewig U, Bonfante P (2009) A Mycorrhizal-Specific Ammonium Transporter from Lotus japonicus Acquires Nitrogen Released by Arbuscular Mycorrhizal Fungi. Plant Physiology 150:73-83. https://doi.org/10.1104/pp.109.136390

Hacquard S, Delaruelle C, Legué V, Tisserant E, Kohler A, Frey P, Martin F, Duplessis S (2010) Laser Capture Microdissection of Uredinia Formed by Melampsora larici-populina Revealed a Transcriptional Switch Between Biotrophy and Sporulation. Molecular Plant-Microbe Interactions 23:1275-1286. https://doi.org/10.1094/MPMI-05-10-0111

Hacquard S, Tisserant E, Brun A, Legué V, Martin F, Kohler A (2013) Functional heterogeneity within ectomycorrhizas. Environmental Microbiology 15:1853-1869. https://doi.org/10.1111/1462-2920.12080

Hogekamp C, Arndt D, Pereira PA, Becker JD, Hohnjec N, Küster H (2011) Laser microdissection unravels cell-type-specific transcription in arbuscular mycorrhizal roots, including CAAT-box transcription factor gene expression correlating with fungal contact and spread. Plant Physiology 157:2023-2043. https://doi.org/10.1104/pp.111.186635

Kloppholz S, Kuhn H, Requena N (2011) A secreted fungal effector of Glomus intraradices promotes symbiotic biotrophy. Current Biology 21:1204-1209. https://doi.org/10.1016/j.cub.2011.06.044

Lin K, Limpens E, Zhang Z, et al. (2014) Single Nucleus Genome Sequencing Reveals High Similarity among Nuclei of an Endomycorrhizal Fungus. PLoS Genetics 10:e1004078. https://doi.org/10.1371/journal.pgen.1004078

Pérez-Tienda J, Testillano PS, Balestrini R, Fiorilli V, Azcón-Aguilar C, Ferrol N (2011) GintAMT2, a new member of the ammonium transporter family in the arbuscular mycorrhizal fungus Glomus intraradices. Fungal Genetics & Biology 48:1044-1055. https://doi.org/10.1016/j.fgb.2011.08.003

Perotto S, Rodda M, Benetti A, Sillo, F, Ercole E, Rodda M, Girlanda M, Murat C, Balestrini R (2014) Gene expression in mycorrhizal orchid protocorms suggests a friendly plant–fungus relationship. Planta 239:1337–1349. https://doi.org/10.1007/s00425-014-2062-x

Recchia GH, Konzen ER, Cassieri F, Caldas DGG, Tsai SM (2018) Arbuscular mycorrhizal symbiosis leads to differential regulation of drought-responsive genes in tissue-specific root cells of common bean. Frontiers in Microbiology 9:1339. https://doi.org/10.3389/fmicb.2018.01339

Rouphael Y, Franken P, Schneider C, Schwarz D, Giovannetti M, Agnolucci M, De Pascale S, Bonini P, Colla G (2015) Arbuscular mycorrhizal fungi act as biostimulants in horticultural crops. Scientia Horticulturae 196:91-108. https://doi.org/10.1016/j.scienta.2015.09.002

Tang W, Coughlan S, Crane E, Beatty M, Duvick J (2006) The application of laser microdissection to in planta gene expression profiling of the maize anthracnose stalk rot fungus Colletotrichum graminicola. Molecular Plant Microbe Interaction 19:1240-1250. https://doi.org/10.1094/MPMI-19-1240T

isserant E, Kohler A, Dozolme-Seddas P, et al. (2012) The transcriptome of the arbuscular mycorrhizal fungus Glomus intraradices (DAOM 197198) reveals functional tradeoffs in an obligate symbiont. New Phytologist 193:755-769. https://doi.org/10.1111/j.1469-8137.2011.03948.x

Zeng T, Holmer R, Hontelez J, te Lintel‐Hekkert B, Marufu L, de Zeeuw T, Wu F, Schijlen, E., Bisseling T, Limpens E. (2018) Host‐ and stage‐dependent secretome of the arbuscular mycorrhizal fungus Rhizophagus irregularis. Plant Journal 94:411-425. https://doi.org/10.1111/tpj.13908

Downloads

Published

2021-02-08

How to Cite

Balestrini, R., Perotto, S. ., & Fiorilli, V. . (2021). Laser microdissection as a tool to study fungal gene expression in mycorrhizal endosymbioses. Italian Journal of Mycology, 50, 1-9. https://doi.org/10.6092/issn.2531-7342/11867

Issue

Section

Articles