Combined impact of forest management and climate change on Boletus edulis productivity: may mycosilviculture mitigate the effects of climate extremes?

Authors

  • Elena Salerni Department of Life Sciences, University of Siena, Via Mattioli 4, 53100 Siena, Italy
  • Luca Paoli Department of Biology, University of Pisa, Via Ghini 13, 56126 Pisa, Italy
  • Claudia Perini Department of Life Sciences, University of Siena, Via Mattioli 4, 53100 Siena, Italy

DOI:

https://doi.org/10.6092/issn.2531-7342/16464

Keywords:

ectomycorrhizal fungi, wild edible mushrooms, coniferous plantations, extreme precipitation, extreme temperature, forest thinning, Italy

Abstract

Climate change can affect forest ecosystems, especially through an increase of extreme events. In order to verify whether mycosilvicultural practices could mitigate the effects of climate change, productivity of Boletus edulis in Abies alba managed plantations was correlated to intense rainfall and temperature peaks during three years. Fungal productivity in each of the 21 days following an extreme climatic event was considered. Results showed that sudden increases in maximum temperature seemed to have an inhibitory effect on B. edulis productivity in sites with no or modest thinning. In sites with heavy thinning, productivity seemed to be favoured by high temperatures, starting from the twentieth day following the extreme event. Mycosilviculture may mitigate the climate change effects; however, further studies are needed to verify how climate-dominated effects can be altered by local factors and how ecological relationship between B. edulis and forest ecosystem will be affected.

References

Ágreda T, Águeda B, Olano JM, Vicente-Serrano S.M, Fernández-Toirán M (2015) Increased evapotranspiration demand in a Mediterranean climate might cause a decline in fungal yields under global warming. Global Change Biology 21:3499‒3510. http://dx.doi.org/10.1111/gcb.12960

Ágreda T, Águeda B, Fernández-Toiránc M, Vicente-Serrano SM, Òlano JM (2016) Long-term monitoring reveals a highly structured interspecific variability in climatic control of sporocarp production. Agricultural and Forest Meteorology 223:39‒47. http://dx.doi.org/10.1016/j.agrformet.2016.03.015

Alday JG, De Aragon JM, de Miguel S, Bonet JA (2017) Mushroom biomass and diversity are driven by different spatio-temporal scales along Mediterranean elevation gradients. Scientific Reports 7:1‒11. http://dx.doi.org/10.1038/srep45824

Alonso Ponce R, Águeda B, Ágreda T, Modrego P, Aldea J, Fernández-Toirán M, Martínez-Peña F (2011) Rockroses and Boletus edulis ectomycorrhizal association: realized niche and climatic suitability in Spain. Fungal Ecology 4:224‒232. http://dx.doi.org/10.1016/j.funeco.2010.10.002

Andrew C, Heegaard E, Høiland K, Senn-Irlet B, Kuyper TW, Krisai-Greilhuber I, Kirk PM, Heilmann-Clausen J, Gange AC, Egli S, Bässler C, Büntgen U, Boddy L, Kauserud H (2018) Explaining European fungal fruiting phenology with climate variability. Ecology 99(6):1306‒1315. https://doi.org/10.1002/ecy.2237

Baar J, Kuyper TW (1993) Litter removal in forests and effect on mycorrhizal fungi. In: Fungi of Europe: Investigation, Recording and Conservation (Pegler DN, Boddy L, Ing B, Kirk PM, eds). Kew Royal Botanic Gardens, pp 275‒286.

Baar J, Kuyper TW (1998) Restoration of aboveground ectomycorrhizal flora in stands of Pinus sylvestris (Scots pine) in the Netherlands by removal of litter and humus. Restoration Ecology 6:227‒237. https://doi.org/10.1046/j.1526-100X.1998.00635.x

Baar J, Ter Braak CJF (1996) Ectomycorrhizal sporocarp occurrence as affected by manipulation of litter and humus layers in Scots pine stands of different age. Applied Soil Ecology 4:61‒73. https://doi.org/10.1016/0929-1393(96)00097-2

Boa ER (2004) Wild edible fungi: a global overview of their use and importance to people. Food and Agriculture Organization of United Nations, Rome, Italy.

Boddy L, Büntgen U, Egli S, Gange AC, Heegaard E, Kirk PM, Mohammad A, Kauserud H (2014) Climate variation effects on fungal fruiting. Fungal Ecology 10:20‒33. http://dx.doi.org/10.1016/j.funeco.2013.10.006

Bonet JA, Palahí M, Colinas C, Pukkala T, Fischer CR, Miina J, Martínez de Aragón J (2010) Modelling the production and species richness of wild mushrooms in pine forests of Central Pyrenees in north-eastern Spain. Canadian Journal of Forest Research 40:347‒356. http://dx.doi.org./10.1139/X09-198

Bonet JA, de Miguel S, de Aragón JM, Pukkala T, Palahí M (2012) Immediate effect of thinning on the yield of Lactarius group deliciosus in Pinus pinaster forests in Northeastern Spain. Forest Ecology and Management 265:211‒217. https://doi.org/10.1016/j.foreco.2011.10.039

Büntgen U, Egli S, Galván JD, Diez JM, Aldea J, Latorre J, Martínez-Peña F (2015) Drought-induced changes in the phenology, productivity and diversity of Spanish fungi. Fungal Ecology 16:6‒18. http://dx.doi.org/10.1016/j.funeco.2015.03.008

Cannon PF, Kirk PM (2007) Fungal Families of the World. CABI UK Centre, Egham.

Cantiani P (2016) Selective thinning: Increasing mechanical stability and biodiversity in black pine plantations. Compagnia delle Foreste Srl. Arezzo. https://www.selpibio.eu/en/publications/item/43-technical-handbook-selective-thinning.html

Carta Geologica d’Italia (1965) Scala 1:100.000, Fg. 129 (S. Fiora).

Castaño C, Alday JG, Lindahlc BD, Martínez de Aragónd J, de Miguel S, Colinas C, Parladé J, Pera J, Bonet JA (2018) Lack of thinning effects over inter-annual changes in soil fungal community and diversity in a Mediterranean pine forest. Forest Ecology and Management 424:420‒427. https://doi.org/10.1016/j.foreco.2018.05.004

Collado E, Bonet JA, Camarero JJ, Egli S, Peter M, Salo K, Martínez-Peña F, Ohenoja E, Martín-Pinto P, Primicia I, Büntgen U, Kurttila M, Oria-de-Rueda JA, Martínez-de-Aragón J, Miina J, de Miguel S (2019) Mushroom productivity trends in relation to tree growth and climate across different European forest biomes. Science of the Total Environment 689:602‒615. https://doi.org/10.1016/j.scitotenv.2019.06.471

Diez JM, James TY, McMunn M, Ibáñez I (2013) Predicting species-specific responses of fungi to climatic variation using historical records. Global Change Biology 19:3145‒3154. https://doi.org/10.1111/gcb.12278

Egli S, Ayer F (1997) Est-il possible d'améliorer la production de champignons comestibles en forêt? L'exemple de la réserve mycologique de La Chanéaz en Suisse. Revue forestière française 49:235‒243.

Fioravanti G, Piervitali E, Desiato F, Perconti W, Fraschetti P (2013) Variazioni e tendenze degli estremi di temperatura e precipitazioni in Italia. ISPRA, Stato dell’Ambiente, Roma.

García-Bustamante E, Gonzalez-Rouco JF, García-Lozano E, Martinez-Peña F, Navarro J (2021) Impact of local and regional climate variability on fungi production from Pinus sylvestris forests in Soria, Spain. International Journal of Climatology 1‒19. https://doi.org/10.1002/joc.7144

Giannini E, Lazzarotto A, Signorini R (1972) Lineamenti di geologia della Toscana meridionale. Rendiconti della Società Italiana di Mineralogia e Petrologia 27:33‒168.

Hernández-Rodríguez M, de Miguel S, Pukkala T, Oria de Rueda JA, Martín-Pinto P (2015) Climate-sensitive models for mushroom yields and diversity in Cistus ladanifer scrublands. Agricultural and Forest Meteorology 213:173‒182. https://doi.org/10.1016/j.agrformet.2015.07.001

Intergovernmental Panel on Climate Change (IPCC) AR4 (2007) https://www.ipcc.ch/report/ar4/syr/

Intergovernmental Panel on Climate Change (IPCC) AR5 (2014) https://www.ipcc.ch/report/ar5/syr/

Karavani A, De Cáceres M, de Aragón JM, Bonet JA, de Miguel S (2018) Effect of climatic and soil moisture conditions on mushroom productivity and related ecosystem services in Mediterranean pine stands facing climate change. Agricultural and Forest Meteorology 248:432‒440. https://doi.org/10.1016/j.agrformet.2017.10.024

Kauserud H, Stige LS, Vik JO, Økland RH, Høiland K, Stenseth NC (2008) Mushroom fruiting and climate change. Proceedings of the National Academy of Sciences of the United States of America 105(10):3811‒3814. http://www.pnas.org/cgi/doi/10.1073/pnas.0709037105

Kauserud H, Heegaard E, Buntgen U, Halvorsen R, Egli S, Senn-Irlet B, Krisai-Greilhuber I, Damon W, Sparks T, Norden J, Hoiland K, Kirk P, Semenov M, Boddy L, Stenseth NC (2012) Warming-induced shift in European mushroom fruiting phenology. Proceedings of the National Academy of Sciences of the United States of America 109(36):14488‒14493. https://doi.org/10.1073/pnas.1200789109

Leonardi P, Graziosi S, Zambonelli A, Salerni E (2017) The economic potential of mushrooms in an artificial Pinus nigra forest. Italian Journal of Mycology 46:48‒59. https://doi.org/10.6092/issn.2531-7342/7287

Lin WR, Wang PH, Chen M.C, Kuo YL, Chiang PN, Wang MK (2015) The impacts of thinning on the fruiting of saprophytic fungi in Cryptomeria japonica plantations in central Taiwan. Forest Ecology and Management 336:183‒193. https://doi.org/10.1016/j.foreco.2014.10.022

Martínez de Aragón J, Riera P, Giegiczny M, Colinas C (2011) Value of wild mushroom picking as an environmental service. Forest Policy and Economics 13(1):419‒424. http://dx.doi.org/10.1016/j.forpol.2011.05.003

Martínez-Peña F, Oria de Rueda JA, Ágreda T (2011) Manual para lagestión del recurso micológico forestal en Castilla y León. Serie Técnica de laJunta de Castilla y León, Valladolid.

Martínez-Peña F, de Miguel S, Pukkala T, Bonet J, Ortega-Martínez P, Aldea J, Martínez de Aragón JM (2012a) Yield models for ectomycorrhizal mushrooms in Pinus sylvestris forests with special focus on Boletus edulis and Lactarius group deliciosus. Forest Ecology and Management 282:63‒69. https://doi.org/10.1016/j.foreco.2012.06.034

Martínez-Peña F, Ágreda T, Águeda B, Ortega-Martínez P, Fernández-Toirán LM (2012b) Edible sporocarp production by age class in a Scots pine stand in northern Spain. Mycorrhiza 22:167‒174. https://doi.org/10.1007/s00572-011-0389-8

Mello A, Ghignone S, Vizzini A, Sechi C, Ruiu P, Bonfante P (2006) ITS primers for the identification of marketable boletes. Journal of Biotechnology 121:318–329. https://doi.org/10.1016/j.jbiotec.2005.08.022

Palahí M, Pukkala T, Bonet J.A, Colinas C, Fischer CR, Martínez de Aragón J (2009) Effect of the inclusion of mushroom values on the optimal management of even-aged pin stands of Catalonia. Forest Science 55(6):503‒511.

Parladé J, Martínez-Peña F, Pera J (2017) Effects of forest management and climatic variables on the mycelium dynamics and sporocarp production of the ectomycorrhizal fungus Boletus edulis. Forest Ecology and Management 390:73‒79. https://doi.org/10.1016/j.foreco.2017.01.025

Pierangelo A, Rolland B (2013) Guida pratica di micoselvicoltura. https://keep.eu/projects/7849/AMYCOFOREST-EN

Pilz D, Molina R, Mayo J (2006) Effects of thinning young forests on chanterelle mushroom production. Journal of Forestry 104(1):9‒14.

Primicia I, Camarero JJ, Martínez de Aragón J, de-Miguel S, Bonet JA (2016) Linkages between climate, seasonal wood formation and mycorrhizal mushroom yields. Agriculture and Forest Meteorology 228:339‒348. https://doi.org/10.1016/j.agrformet.2016.07.013

Salerni E, Perini C (2004) Experimental study for increasing productivity of Boletus edulis s.l. in Italy. Forest Ecology and Management 201:161‒170. http://dx.doi.org/10.1016/j.foreco.2004.06.027

Salerni E, Laganà A, Perini C, Loppi S, De Dominicis V (2002) Effects of temperature and rainfall on fruiting of macrofungi in oak forests of the Mediterranean area. Israel Journal of Plant Sciences 50:189‒198.

Salerni E, Barbato D, Cazau C, Gardin L, Henson G, Leonardi P, Tomao A, Perini C (2020) Selective thinning to enhance soil biodiversity in artificial black pine stands - what happens to mushroom fruiting? Annals of Forest Research 63(2):75‒90. https://doi.org/10.15287/afr.2020.2006

Sánchez-González M, de Miguel S, Martin-Pinto P, Martínez-Peña F, Pasalodos-Tato M, Oria-de-Rueda JA, Martínez de Aragón J, Cañellas I, Bonet JA (2019) Yield models for predicting aboveground ectomycorrhizal fungal productivity in Pinus sylvestris and Pinus pinaster stands of northern Spain. Forest Ecosystems 6:52. https://doi.org/10.1186/s40663-019-0211-1

Savoie JM, Largeteau ML (2011) Production of edible mushrooms in forests: trends in development of a mycosilviculture. Applied Microbiology and Biotechnology 89:971‒979. http://dx.doi.org/10.1007/s00253-010-3022-4

Smit E, Veenman C, Baar J (2003) Molecular analysis of ectomycorrhizal basidiomycete communities in a Pinus sylvestris L. stand reveals long-term increased diversity after removal of litter and humus layers. FEMS Microbiology Ecology 45:49‒57. https://doi.org/10.1016/S0168-6496(03)00109-0

Tomao A, Bonet JA, Martínez de Aragón J, de Miguel S (2017) Is silviculture able to enhance wild forest mushroom resources? Current knowledge and future perspectives. Forest Ecology and Management 402:102‒114. https://doi.org/10.1016/j.foreco.2017.07.039

Zubaidi MA, Proch J, Konieczny P, Tomczyk Ł (2021) Toxicity testing by the microbial assay for risk assessment (MARA) in relation to trace elements content in King Bolete (Boletus edulis) collected in several sites of Poland. Applied Sciences 11(9):4166. https://doi.org/10.3390/app11094166

Downloads

Published

2023-05-02

How to Cite

Salerni, E., Paoli, L., & Perini, C. (2023). Combined impact of forest management and climate change on Boletus edulis productivity: may mycosilviculture mitigate the effects of climate extremes?. Italian Journal of Mycology, 52(1), 76–88. https://doi.org/10.6092/issn.2531-7342/16464

Issue

Section

Articles