Metabolic profiling of antimicrobial secondary metabolites produced by Penicillium bilaiae EWB-3 isolated from electronic wastes in Algeria

Authors

  • Dounya Achwak Chemmam Molecular and Cellular Biology Laboratory, Faculty of Nature and Life Sciences, University of Jijel, Jijel, 18000. Algeria https://orcid.org/0000-0003-3240-2891
  • Ghania Bourzama Biochemistry and Environmental Toxicology Laboratory, Faculty of Sciences, Badji Mokhtar University, Annaba, 23000. Algeria
  • Nouari Sadrati Characterization and Valorization of Natural Resources Laboratory, Faculty of Nature and Life and Earth Sciences and the Universes, University Mohamed El Bachir El Ibrahimi of Bordj Bou Arreridj, 34000. Algeria
  • Moussa Houhamdi Biology, Water and Environment Laboratory, Faculty of Sciences of Nature and Life and Sciences of the Earth and the Universe, University 8 Mai 1945, Guelma, 24000. Algeria

DOI:

https://doi.org/10.6092/issn.2531-7342/18345

Keywords:

Antimicrobial activity, Electronic waste, GC-MS, Penicillium bilaiae, Secondary metabolites

Abstract

Penicillium species research has progressed far beyond their ability to produce secondary metabolites with potential biological applications, particularly as antimicrobial agents. In this work, Penicillium bilaiae EWB-3 was isolated from electronic waste and identified using morphological and molecular (ITS and β-tubulin regions) methods. For 15 days, Penicillium bilaiae EWB-3 was grown into Czapek Yeast Broth using an orbital shaker. Finally, the secondary metabolites in this strain’s filtrates were extracted using ethyl acetate. The agar well diffusion method tested this crude extract for antimicrobial activity. The Penicillium bilaiae EWB-3 extract exhibited strong antimicrobial potential against all tested microorganisms, including Pseudomonas aeruginosa, Bacillus cereus, Enterococcus faecalis, Escherichia coli, Salmonella typhimurium, Staphylococcus aureus, Methicillin-resistant Staphylococcus aureus, Klebsiella pneumoniae, Candida albicans and Aspergillus niger. With diameters of 31, 26, and 25 mm, the largest inhibition zones were observed against C. albicans, S. aureus, and E. faecalis, respectively. The presence of 24 active compounds was revealed by gas chromatography-mass spectrometry (GC-MS) analysis of the crude extract of Penicillium bilaiae EWB-3. The findings suggest that the secondary metabolite extract of Penicillium bilaiae EWB-3 could be a promising active pharmaceutical component.

References

Abdel-Razek AS, El-Naggar ME, Allam A, Abdel-Razek AS, El-Naggar ME, Allam A, Morsy OM, Othman SI (2020) Microbial natural products in drug discovery. Processes 8(4):470. https://doi.org/10.3390/pr8040470

Agoramoorthy G, Chandrasekaran M, Venkatesalu V, Hsu M (2007) Antibacterial and antifungal activities of fatty acid methyl esters of the blind-your-eye mangrove from India. Brazilian Journal of Microbiology 38:739-742. https://doi.org/10.1590/S1517-83822007000400028

Akbar A, Sadiq MB, Ali I, Anwar M, Muhammad N, Muhammad J, Shafee M, Ullah S, Gul Z, Qasim S, Ahmad S, Anal AK (2019) Lactococcus lactis subsp. lactis isolated from fermented milk products and its antimicrobial potential. CYTA-Journal of Food 17(1):214-220. https://doi.org/10.1080/19476337.2019.1575474

Ali Shah ZK. Khan Z. Iqbal T. Masood HA. Hemeg, Rauf A (2022) Metabolic and pharmacological profiling of Penicillium claviforme by a combination of experimental and bioinformatic approaches. Annals of Medicine 54(1):2102-2114. https://doi.org/10.1080/07853890.2022.2102205

Al-Saleem MS, Hassan WH, El Sayed ZI, Abdel-Aal MM, Abdel-Mageed WM, Abdelsalam E, Abdelaziz S (2022) Metabolic Profiling and In Vitro Assessment of the Biological Activities of the Ethyl Acetate Extract of Penicillium chrysogenum “Endozoic of Cliona sp. Marine Sponge” from the Red Sea (Egypt). Marine Drugs 20(5):326. https://doi.org/10.3390/md20050326

Arwidsson Z, Johansson E, von Kronhelm T, Allard B, van Hees P (2010) Remediation of metal contaminated soil by organic metabolites from fungi I—production of organic acids. Wat. Air and Soil Pollution 205(1):215-226. https://doi.org/10.1007/s11270-009-0067-z

Ashtekar N, Rajeshkumar KC, Yilmaz N, Visagie CM (2022) A new Penicillium section Citrina species and series from India. Mycological Progress 21(4):1-13. https://doi.org/10.1007/s11557-022-01802-3

Ben Mefteh F, Daoud A, Chenari Bouket A, Thissera B, Kadri Y, Cherif-Silini H, Eshelli M, Alenezi FN, Vallat A, Oszako T (2018) Date palm trees root-derived endophytes as fungal cell factories for diverse bioactive metabolites. Internatinale Journal of Molecular Sciences 19(7):1986. https://doi.org/10.3390/ijms19071986

Eloff JN (2019) Avoiding pitfalls in determining antimicrobial activity of plant extracts and publishing the results. BMC complementary and alternative medicine 19:1-8. https://doi.org/10.1186/s12906-019-2519-3

Fatima N, Mukhtar U, Qazi MA, Jadoon M, Ahmed S (2016) Biological evaluation of endophytic fungus Chaetomium sp. NF15 of Justicia adhatoda L. a potential candidate for drug discovery. Jundishapur Journal of Microbiology 9(6). https://doi.org/10.5812/jjm.29978

Frisvad JC (2012) Media and growth conditions for induction of secondary metabolite production. In: Fungal Secondary Metabolism (Keller N, Turner G, eds), Methods in Molecular Bilogy 944. Humana Press, Totowa, NJ, pp 80-92. https://doi.org/10.1007/978-1-62703-122-6_3

Gong M, Du P, Liu X, Zhu C (2014) Transformation of inorganic P fractions of soil and plant growth promotion by phosphate-solubilizing ability of Penicillium oxalicum I1. Journal of Microbiology 52(12):1012-1019. https://doi.org/10.1007/s12275-014-4406-4

Guo M, Jiang W, Yang M, Dou X, Pang X (2020) Characterizing fungal communities in medicinal and edible Cassiae Semen using high-throughput sequencing. International journal of Food Microbiology 319:108496. https://doi.org/10.1016/j.ijfoodmicro.2019.108496

Gurtler J, Mai T (2014) Traditional Preservatives-Organic acids. In Encyclopedia of Food Microbiology, 2nd ed. Academic Press: London, UK, pp 119-130.

Hansen V, Bonnichsen L, Nunes I, Sexlinger K, Lopez S, van der Bom F, Nybroe O, Nicolaisen M, Jensen L (2020) Seed inoculation with Penicillium bilaiae and Bacillus simplex affects the nutrient status of winter wheat. Biology and Fertility of Soils 56(1):97-109. https://doi.org/10.1007/s00374-019-01401-7

Hashem AH, Khalil AMA, Reyad AM, Salem SS (2021) Biomedical applications of mycosynthesized selenium nanoparticles using Penicillium expansum ATTC 36200. Biological Trace Element Research 199(10):3998-4008. https://doi.org/10.1007/s12011-020-02506-z

Kour D, Rana KL, Kaur T, Singh B, Chauhan VS, Kumar A, Rastegari AA, Yadav N, Yadav AN, Gupta VK (2019) Extremophiles for Hydrolytic Enzymes Productions: Biodiversity and Potential Biotechnological Applications. In: Bioprocessing for Biomolecules Production. (Molina G, Gupta V, Singh B, Gathergood N, eds). John Wiley & Sons, pp 321-372. https://doi.org/10.1002/9781119434436.ch16

Kumar J, Sharma VK, Singh DK, Mishra A, Gond SK, Verma SK, Kumar A, Kharwar RN (2016) Epigenetic activation of antibacterial property of an endophytic Streptomyces coelicolor strain AZRA 37 and identification of the induced protein using MALDI TOF MS/MS. PLoS One 11(2): e0147876. https://doi.org/10.1371/journal.pone.0147876

Kumari P, Singh A, Singh DK, Sharma VK, Kumar J, Gupta VK, Bhattacharya S, Kharwar R (2021) Isolation and purification of bioactive metabolites from an endophytic fungus Penicillium citrinum of Azadirachta indica. South African Journal of Botany 139:449-457. https://doi.org/10.1016/j.sajb.2021.02.020

Li G, Kusari S, Kusari P, Kayser O, Spiteller M (2015) Endophytic Diaporthe sp. LG23 produces a potent antibacterial tetracyclic triterpenoid. Journal of Natural Products 78(8):2128-2132. https://doi.org/10.1021/acs.jnatprod.5b00170

Liu SQ, Yang C, Huang Y, Ding X, Li Y, Fan WM, Hedrick JL, Yang YY (2012) Antimicrobial and antifouling hydrogels formed in situ from polycarbonate and poly (ethylene glycol) via Michael addition. Advanced Materials 24(48):6484-6489. https://doi.org/10.1002/adma.201202225

Lykholat YV, Khromykh NO, Didur OO, Drehval OA, Sklyar TV, Anishchenko AO (2021) Chaenomeles speciosa fruit endophytic fungi isolation and characterization of their antimicrobial activity and the secondary metabolites composition. Beni-Suef University Journal of Basic and Applied sciences 10(1):1-10. https://doi.org/10.1186/s43088-021-00171-2

Menezes RdP, Bessa MAdS, Siqueira CdP, Teixeira SC, Ferro EAV, Martins MM, Cunha LCS, Martins CHG (2022) Antimicrobial, Antivirulence, and Antiparasitic Potential of Capsicum chinense Jacq. Extracts and Their Isolated Compound Capsaicin. Antibiotics 11(9):1154. https://doi.org/10.3390/antibiotics11091154

Meng LH, Li XM, Liu Y, Wang BG (2014) Penicibilaenes A and B, sesquiterpenes with a tricyclo [6.3. 1.01, 5] dodecane skeleton from the marine isolate of Penicillium bilaiae MA-267. Organic Letters 16(23):6052-6055. https://doi.org/10.1021/ol503046u

Meng LH, Li XM, Li HL, Wang BG (2020) Chermebilaenes A and B, new bioactive meroterpenoids from co-cultures of marine-derived isolates of Penicillium bilaiae MA-267 and Penicillium chermesinum EN-480. Marine Drugs 18(7):339. https://doi.org/10.3390/md18070339

Nakahara S, Kusano M, Fujioka S, Shimada A, Kimura Y (2004) Penipratynolene, a novel nematicide from Penicillium bilaiae Chalabuda. Bioscience, Biotechnology, and Biochemistry 68(1):257-259. https://doi.org/10.1271/bbb.68.257

Nawaz H, Shad MA, Rehman N, Andaleeb H, Ullah N (2020) Effect of solvent polarity on extraction yield and antioxidant properties of phytochemicals from bean (Phaseolus vulgaris) seeds. Brazilian Journal of Pharmaceutical Sciences 56. https://doi.org/10.1590/s2175-97902019000417129

Nischitha R, Shivanna M (2021) Metabolite fingerprinting, in vitro antimicrobial and antioxidant activities and in-silico docking in Alloteropsis cimicina and its endophytic fungus Penicillium pinophilum. Molecular Biology Reports 48(5):4021-4037. https://doi.org/10.1007/s11033-021-06410-0

Omeike SO, Kareem SO, Lasisi AA (2019) Potential antibiotic-producing fungal strains isolated from pharmaceutical waste sludge. Beni-Suef University journal of Basic and Applied sciences 8(1):1-7. https://doi.org/10.1186/s43088-019-0026-8

Pan C, Shi Y, Auckloo BN, Hassan SSu, Akhter N, Wang K, Ye Y, Arthur Chen CT, Tao X, Wu B (2017) Isolation and antibiotic screening of fungi from a hydrothermal vent site and characterization of secondary metabolites from a Penicillium isolate. Marine Biotechnology 19:469-479. https://doi.org/10.1007/s10126-017-9765-5

Pierce CG, Uppuluri P, Tristan AR, Wormley FL, Mowat E, Ramage G, Lopez-Ribot JL (2008) A simple and reproducible 96-well plate-based method for the formation of fungal biofilms and its application to antifungal susceptibility testing. Nature Protocols (3) 1494-1500. https://doi.org/10.1038/nprot.2008.141

Pitt JI (1979) Penicillium crustosum and P. simplicissimum, the correct names for two common species producing tremorgenic mycotoxins. Mycologia 71:1166-1177. https://doi.org/10.1080/OO275514.1979.1202.1128

Raymond NS, Jensen LS, Stöve DM (2018) Enhancing the phosphorus bioavailability of thermally converted sewage sludge by phosphate-solubilising fungi. Ecological Engineering 120:44-53. https://doi.org/10.1016/j.ecoleng.2018.05.026

Sadrati N, Zerroug A, Demirel R, Harzallah D (2023) Anti-multidrug-resistant Staphylococcus aureus and anti-dermatophyte activities of secondary metabolites of the endophytic fungus Penicillium brevicompactum ANT13 associated with the Algerian endemic plant Abies numidica. Archives of Microbiology 205(4), 110. https://doi.org/10.1007/s00203-023-03452-9

Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proceedings of the national academy of sciences 74(12):5463-5467. https://doi.org/10.1073/pnas.74.12.546

Song X, Tu R, Mei X, Wu S, Lan B, Zhang L, Luo X, Liu J, Luo M (2020) A mycophenolic acid derivative from the fungus Penicillium sp. SCSIO sof101. Natural Product Research 34(9):1206-1212. https://doi.org/10.1080/14786419.2018.1553881

Stierle AA, Stierle DB (2014) Bioactive secondary metabolites from acid mine waste extremophiles. Natural product communications 9(7). https://doi.org/10.1177/1934578X1400900738

Toghueo RMK, Boyom FF (2020) Endophytic Penicillium species and their agricultural, biotechnological, and pharmaceutical applications. 3 Biotech 10(3):1-35. https://doi.org/10.1007/s13205-020-2081-1

Velasco-Rodríguez Ó, Fil M, García-Calvo L, Kosalková K, Barreiro C (2021) Microbial isolation and characterization of new antibiotic-producing strains from decayed wood. Antimicrobial Therapies. Methods in Molecular Biology vol 2296. Humana, New York, NY. 10.1007/978-1-0716-1358-0_3

Vemireddy B, Madasi A, Ajmeera A, Vanteru KR (2020) Distribution and diversity of endophytic fungi associated with three medicinal tree species from Eturnagaram Wildlife Sanctuary, TS, India. Journal of Applied Biology and Biotechnology 8(6):7-12. https://doi.org/10.7324/JABB.2020.80602

Watanabe T, Yamamoto Y, Miura M, Konno H, Yano S, Nonomura Y (2019) Systematic analysis of selective bactericidal activity of fatty acids against Staphylococcus aureus with minimum inhibitory concentration and minimum bactericidal concentration. Journal of Oleo Science 68(3):291-296. https://doi.org/10.5650/jos.ess18220

Yadav AN, Kour D, Kaur T, Devi R, Guleria G, Rana KL, Yadav N, Rastegari AA (2020) Microbial biotechnology for sustainable biomedicine systems: Current research and future challenges. In: Trends of Microbial Biotechnology for Sustainable Agriculture and Biomedicine Systems: Perspectives for Human Health (Asghar Rastegari A, Nath Yadav A, Yadav N, eds). Elsevier, pp 281-292. https://doi.org/10.1016/B978-0-12-820528-0.00020-X

Yadav AN, Verma P, Kumar V, Sangwan P, Mishra S, Panjiar N, Gupta VK, Saxena AK (2018) Biodiversity of the Genus Penicillium in Different Habitats. In: New and Future Developments in Microbial Biotechnology and Bioengineering. Penicillum System Properties and Applications (Kumar Gupta V, Rodriguez-Couto S, eds). Elsevier, pp 3-18. https://doi.org/10.1016/B978-0-444-63501-3.00001-6

Zerroug A, Sadrati N, Demirel R, Bakli S, Harzallah D (2018) Antibacterial activity of endophytic fungus, Penicillium griseofulvum MPR1 isolated from medicinal plant, Mentha pulegium L. African Journal of Microbiology Reserch 12(48):1056-1066. https://doi.org/10.5897/AJMR2018.8887

Zhang Y, Xue R, He X, Cheng Q, Hartley W, Xue S (2020) Effect of acid production by Penicillium oxalicum on physicochemical properties of bauxite residue. Geomicrobiology Journal 37(10):929-936. https://doi.org/10.1080/01490451.2020.1801907

Zhao X, Liu X, Zhao H, Ni Y, Lian Q, Qian H, He B, Liu H, Ma Q (2021) Biological control of Fusarium wilt of sesame by Penicillium bilaiae 47M-1. BioControl 158:104601. https://doi.org/10.1016/j.biocontrol.2021.104601

Downloads

Published

2024-02-05

How to Cite

Chemmam, D. A., Bourzama, G., Sadrati, N., & Houhamdi, M. (2024). Metabolic profiling of antimicrobial secondary metabolites produced by Penicillium bilaiae EWB-3 isolated from electronic wastes in Algeria. Italian Journal of Mycology, 53(1), 13–28. https://doi.org/10.6092/issn.2531-7342/18345

Issue

Section

Articles