Comparison of total amino acid composition and total protein content in five wild mushrooms

Authors

DOI:

https://doi.org/10.6092/issn.2531-7342/20828

Keywords:

Artomyces pyxidatus, Caloboletus calopus, Strobilomyces strobilaceus, Xerocomellus porosporus, wild basidiomata, Hericium flagellum

Abstract

We studied the total amino acid compositions and total protein content in five wild mushrooms – Artomyces pyxidatus, Caloboletus calopus, Hericium flagellum, Strobilomyces strobilaceus, Xerocomellus porosporus. The highest total protein content is found in Xerocomellus porosporus (44.8% w/w) and Strobilomyces strobilaceus (42% w/w). In the fruiting bodies of the mushrooms, Hericium flagellum and Artomyces pyxidatus, the total protein content was the lowest, at 14.02% w/w and 17.7% w/w, respectively. The proportion of essential amino acids in the mushrooms was 42.26%, 44.98%, 46.99%, 39.33% and 40.97% in Xerocomellus porosporus, Caloboletus calopus, Strobilomyces strobilaceus, Artomyces pyxidatus, and Hericium flagellum, respectively. The proportion of hydrophobic amino acids ranged from 39.49% in Xerocomellus porosporus to 59.02% in Hericium flagellum. Therefore, the basidiomata of X. porosporus and S. strobilaceus are recommended as sources of protein, including essential amino acids, for the development of dietary supplements.

References

Atila F, Tüzel Y, Pekşen A, Cano AF, Fernandez JA (2021) The effect of different fruiting temperatures on the yield and nutritional parameters of some wild and hybrid Hericium isolates. Scientia Horticulturae 280:109915. https://doi.org.10.1016/j.scienta.2021.109915

BBC (2024) Rare mushroom found growing at farm. https://www.bbc.com/news/articles/crm293d8pe2o

Boa E (2004) Wild edible fungi: a global overview of their use and importance to people. In: Non-Wood Forest Products, Vol. 17. FAO, Viale delle Terme di Caracalla, Rome, Italy, pp. 123–128.

Chen J, Liu H, Li T, Wang Y (2023) Edibility and species discrimination of wild bolete mushrooms using FT-NIR spectroscopy combined with DD-SIMCA and RF models. LWT 180:114701. https://doi.org/10.1016/j.lwt.2023.114701

Deng H, Wang Y, Lei JR, Chen ZZ, Liang ZQ, Zeng NK (2023) Four new species of Strobilomyces (Boletaceae, Boletales) from Hainan Island, tropical China. Journal of Fungi 9(12):1128. https://doi.org/10.3390/jof9121128

Didukh YaP (2009) Red data book of Ukraine. Plant Kingdom. Globalconsulting, Kyiv, Ukraine.

Dodd JL (1972) The genus Clavicorona. Mycologia 64(4):737–773.

Durakova A (2020) Sorption characteristics of Bulgarian penny buns (Boletus edulis). E3S Web of Conferences 180:03008. TE-RE-RD 2020, pp. 1–8. https://doi.org/10.1051/e3sconf/202018003008

Ďuriška O, Jančovičová S, Miškovic J (2012). Macromycetes of the Fialková Dolina nature reserve (Devínska Kobyla Mts., Slovakia). Acta Botanica Universitatis Comenianae 47:3–12.

Effiong ME, Umeokwochi CP, Afolabi IS, Chinedu SN (2024) Assessing the nutritional quality of Pleurotus ostreatus (oyster mushroom). Frontiers in Nutrition 16(10):1279208. https://doi.org/10.3389/fnut.2023.1279208

Farid A, Bessette AE, Bessette AR, Bolin JA, Kudzma LV, Franck AR, Garey JR (2021) Investigations in the boletes (Boletaceae) of southeastern USA: four novel species and three novel combinations. Mycosphere 12(1):1038–1076. https://doi.org/10.5943/mycosphere/12/1/12

Fernandes T, Garrine C, Ferrão J, Bell V, Varzakas T (2021) Mushroom nutrition as preventative health care in Sub-Saharan Africa. Applied Sciences 11(9):4221. htpps://doi.org/10.3390/app11094221

Fraiture A, Hayova V, Lickey E (2008) First record of Artomyces microsporus in Europe Cryptogamie. Mycologie 29(3):219–229.

GBIF Secretariat (2024) Hericium alpestre Pers. https://www.gbif.org/uk/species/5248525

Gherghel F (2009) Identification and characterization of Quercus robur ectomycorrhiza in relation to heavy metal contamination. Dissertation zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.) Friedrich-Schiller-Universität Jena.

Gierczyk B, Kujawa A, Szczepkowski A, Ślusarczyk T, Pachlewski T, Chachuła P, Domian G (2019) Macrofungi of the Bieszczady Mountains. Acta Mycologica 54(2):1–268. https://doi.org/10.5586/am.1124

Gonkhom D, Luangharn T, Raghoonundon B, Hyde KD, Stadler M, Thongklang N (2021) Hericium: a review of the cultivation, health-enhancing applications, economic importance, industrial, and pharmaceutical applications. Fungal Biotec 1(2):115–127. https://doi.org/10.5943/FunBiotec/1/2/8

Han LH, Wu G, Horak E, Halling RE, Xu J, Ndolo EST, Sato H, Fechner N, Sharma YP, Yang ZL (2020) Phylogeny and species delimitation of Strobilomyces (Boletaceae), with an emphasis on the Asian species. Persoonia 44:113–139. https://doi.org/10.3767/persoonia.2020.44.05

Hellwig V, Dasenbrock J, Gräf C, Kahner L, Schumann S, Steglich W (2002) Calopins and Cyclocalopins − bitter principles from Boletus calopus and related mushrooms. European Journal of Organic Chemistry 17:2895–2904 https://doi.org/10.1002/1099-0690(200209)2002:17<2895::AID-EJOC2895>3.0.CO;2-S

Hess JM, Wang Q, Kraft C, Slavin JL (2017) Impact of Agaricus bisporus mushroom consumption on satiety and food intake. Appetite 1(117):179–185. https://doi.org/10.1016/j.appet.2017.06.021

Ho LH, Zulkifli NA, Tan TC (2020) Edible mushroom: nutritional properties, potential nutraceutical values, and its utilisation in food product development. In: An Introduction to Mushroom (Passari AK, Sánchez S, eds). IntechOpen Limited, London, UK, pp. 19–38. https://doi.org/10.5772/intechopen.91827

Jianzhao Q, Jing W, Shijie K, Jingming G, Kawagishi H, Hongwei L, Chengwei L (2024) The chemical structures, biosynthesis, and biological activities of secondary metabolites from the culinary-medicinal mushrooms of the genus Hericium: a review. Chinese Journal of Natural Medicines 22(8):676–698. https://doi.org/10.1016/S1875-5364(24)60590-X

Kabat L, Becker KH, Gillin E, Marciani-Politi G, Beaney J (2001). Food Balance Sheets. A Handbook. FAO, Rome, Italy. https://www.fao.org/4/x9892e/x9892e00.pdf

Kirbağ S, Akyüz M (2010) Nutritive value of edible wild and cultured mushrooms. Turkish Journal of Biology 34(1):97–102. https://doi.org/10.3906/biy-0805-17

Ko HG, Park HG, Park SH, Choi CW, Kim SH, Park WM (2005) Comparative study of mycelial growth and basidiomata formation in seven different species of the edible mushroom genus Hericium. Bioresource Technology 96(13):1439–1444. https://doi.org/10.1016/j.biortech.2004.12.009

Kujawska MB, Rudawska M, Stasińska M, Pietras M, Leski T (2021) Distribution and ecological traits of a rare and threatened fungus Hericium flagellum in Poland with the prediction of its potential occurrence in Europe. Fungal Ecology 50:101035 https://doi.org/10.1016/j.funeco.2020.101035

Kuo M (2007) Artomyces pyxidatus. http://www.mushroomexpert.com/artomyces_pyxidatus.html

Lalotra P, Gupta D, Yangdol R, Sharma YP, Gupta SK (2016) Bioaccumulation of heavy metals in the sporocarps of some wild mushrooms. Current Research in Environmental & Applied Mycology 6(3):159–165. https://doi.org/10.5943/cream/6/3/2

Lazarus W (1973) Purification of plant extracts for ion-exchange chromatography of free amino acids. Journal of Chromatography A 87:169–178. https://doi.org/10.1016/S0021-9673(01)91530-4

Leal AR, Barros L, Barreira JCM, Sousa MJ, Martins A, Santos-Buelga C, Ferreira ICFR (2013) Portuguese wild mushrooms at the “pharma–nutrition” interface: nutritional characterization and antioxidant properties. Food Research International 50(1):1–9. https://doi.org/10.1016/j.foodres.2012.10.012

Li K, Qiao K, Xiong J, Guo H, Zhang Y (2023) Nutritional values and bio-functional properties of fungal proteins: applications in foods as a sustainable source. Foods 12(24):4388. https://doi.org/10.3390/foods12244388

Lickey EB, Hughes KW, Petersen RH (2002) Biogeographical patterns in Artomyces pyxidatus. Mycologia 94(3):461–471. https://doi.org/10.1080/15572536.2003.11833211

Liu Y, Chen D, You Y, Zeng S, Li Y, Tang Q, Han G, Liu A, Feng C, Li C, Su Y, Su Z. Chen D (2016) Nutritional composition of Boletus mushrooms from Southwest China and their antihyperglycemic and antioxidant activities. Food Chemistry 211:83–91. https://doi.org/10.1016/j.foodchem.2016.05.032

Medek DE, Schwartz J, Myers SS (2017) Estimated effects of future atmospheric CO2 concentrations on protein intake and the risk of protein deficiency by country and region. Environmental Health Perspectives 125(8):087002. https://doi.org/10.1289/EHP41

Miller OK, Watling R (1968) The status of Boletus calopus Fr. in North America. Notes from the Royal Botanic Garden Edinburgh 28:317–326.

Morel S, Arnould S, Vitou M, Boudard F, Guzman C, Poucheret P, Fons F, Rapior S (2018) Antiproliferative and antioxidant activities of wild Boletales mushrooms from France. International Journal of Medicinal Mushrooms 20(1):13–29. https://doi.org/10.1615/IntJMedMushrooms.2018025329

Moreno G, Heykoop M, Esteve-Raventós F, Alvarado P, Traba JM (2016) Xerocomellus poederi. Fungal Planet description sheets: 400–468. Persoonia 36:434–435. https://doi.org/10.3767/003158516X692185

Pandey M, Satisha GC, Azeez S, Kumaran GS, Chandrashekara C (2022) Mushrooms for integrated and diversified nutrition. Journal for Horticultural Sciences 17(1):6–18. https://doi.org/10.24154/jhs.v17i1.1193

Phillips R (1988) Mushrooms: a comprehensive guide to mushroom identification. Pan Macmillan Ltd, London, UK.

Rana R (2016) Nutritive analysis of wild edible mushroom Boletus edulis Bull ex. Fries colleted from North West Himalayas. International Journal of Innovative Research in Science, Engineering and Technology 5(1):698–704. https://doi.org/10.15680/IJIRSET.2015.0501130

Rupcic Z, Rascher M, Kanaki S, Köster RW, Stadler M, Wittstein K (2018) Two new cyathane diterpenoids from mycelial cultures of the medicinal mushroom Hericium erinaceus and the rare species, Hericium flagellum. International Journal of Molecular Sciences 19(3):740. https://doi.org/10.3390/ijms19030740

Săndulescu EB, Sfetcu EL, Stavrescu-Bedivan MM (2022) Macromycetes recorded in the campus of the University of Agronomic Sciences and Veterinary Medicine of Bucharest: preliminary data. Scientific Papers, Series A, Agronomy 65(2):419–424.

Sato H (2016) Cryptic species and host specificity of ectomycorrhizal fungi, Strobilomyces. Japanese Journal of Mycology 57:1–12. https://doi.org/10.18962/jjom.57.1_1

Sato H, Yumoto T, Murakami N (2007) Cryptic species and host specificity in the ectomycorrhizal genus Strobilomyces (Strobilomycetaceae). American Journal of Botany 94(10):1630–1641. https://doi.org/10.3732/ajb.94.10.1630

Schüffler A (2018) Secondary Metabolites of Basidiomycetes. In: The Mycota (Carter D, Chowdhary A, Heitman J, Kück U, eds), Physiology and Genetics, vol 15. Springer, Cham. https://doi.org/10.1007/978-3-319-71740-1_8

Sisti D, Zeppa SD, Amicucci A, Antisari LV, Vianello G, Puliga F, Leonardi P, Iotti M, Zambonelli A (2022) The bianchetto truffle (Tuber borchii) a lead-resistant ectomycorrhizal fungus increases Quercus cerris phytoremediation potential. Environmental Microbiology 24(12):6439-6452. https://doi.org/10.1111/1462-2920.16273

Таn Y, Zeng NK, Xu B (2022) Chemical profiles and health-promoting effects of porcini mushroom (Boletus edulis): a narrative review. Food Chemistry 390(1). https://doi.org/10.1016/j.foodchem.2022.133199

Тagkouli D, Kaliora A, Bekiaris G, Koutrotsios G, Christea M, Zervakis GI, Kalogeropoulos N (2020) Free amino acids in three Pleurotus species cultivated on agricultural and agro-industrial by-products. Molecules 25(17):4015. https://doi.org/10.3390/molecules25174015

Tamjidi S., Ameri A. Esmaeili H. (2023) A review of the application of fungi as an effective and attractive bio-adsorbent for biosorption of heavy metals from wastewater. Environmental Monitoring and Assessment 195(91). https://doi.org/10.1007/s10661-022-10687-4

Teke AN, Bi ME, Ndam LM, Kinge TR (2020) Nutrient and Mineral Contents of Wild Edible Mushrooms from the Kilum-Ijim Forest, Cameroon. Nutrition and Food Science Journal 3(2):128.

Tolera KD, Abera S (2017) Nutritional quality of Oyster Mushroom (Pleurotus Ostreatus) as affected by osmotic pretreatments and drying methods. Food Science & Nutrition 1–8. https://doi.org/10.1002/fsn3.484

Tyler G (1982) Metal accumulation by wood-decaying fungi. Chemosphere. 11(11):1141-1146. https://doi.org/10.1016/0045-6535(82)90124-2

Uju NL, Obiakor-Okeke PN (2014) Nutritional Profile of Three Different Mushroom Varieties Consumed in Amaifeke, Orlu Local Government Area, Imo State, Nigeria. Food Science and Quality Management 31:70-77.

Upcraft T, Johnson R, Finnigan T, Hallett J, Guo M (2020) Protein from renewable resources: Mycoprotein production from agricultural residues. Computer Aided Chemical Engineering 23:5150–5165. https://doi.org/10.1016/B978-0-12-823377-1.50165-8

Wu G, Fanzo J, Miller DD, Pingali P, Post M, Steiner JL, Thalacker-Mercer AE (2014) Production and supply of high-quality food protein for human consumption: sustainability, challenges and innovations, Annals of the New York Academy of Sciences 1321:1–19. https://doi.org/10.1111/nyas.12500

Downloads

Published

2025-04-14

How to Cite

Kopylchuk, H., Voloshchuk, O., Pasailiuk, M., & Fontana, N. (2025). Comparison of total amino acid composition and total protein content in five wild mushrooms. Italian Journal of Mycology, 54(1), 64–76. https://doi.org/10.6092/issn.2531-7342/20828

Issue

Section

Articles