New host and geographic records of Epicoccum italicum (Didymellaceae) and Nigrospora gorlenkoana (Apiosporaceae) from Egypt

Authors

  • Mahmoud Saadeldin Bakhit Department of Botany and Microbiology, Faculty of Science, Sohag University, Sohag, 82524, Egypt
  • Gerges Gad Faheem Department of Botany and Microbiology, Faculty of Science, Sohag University, Sohag 82524, Egypt
  • Bahig Ahmed Ali El Deeb Department of Botany and Microbiology, Faculty of Science, Sohag University, Sohag 82524, Egypt

DOI:

https://doi.org/10.6092/issn.2531-7342/21713

Keywords:

mitosporic fungi, endophytes, molecular phylogeny, medicinal plants, Wadi Bir-El-Ain

Abstract

Two endophytic fungi, Epicoccum italicum and Nigrospora gorlenkoana, are reported here for the first time from medicinal plants collected in Wadi Bir-El-Ain, Sohag Governorate, Egypt. Epicoccum italicum was recorded from healthy roots of Zygophyllum coccineum, whereas Nigrospora gorlenkoana was from healthy leaves of Alhagi maurorum. Phylogenetic analyses of the combined ITS and LSU rDNA sequence data, along with morphological characteristics, were used to identify the new collections. The conidia of E. italicum were multicellular-phragmosporous, subglobose-pyriform, verrucose, brown, with a basal cell, while those of N. gorlenkoana were aseptate, globose to sub-globose, pale brown to black, smooth with an equatorial slit. This is the first report of these species in Egypt and Africa. Detailed descriptions and illustrations are provided for both fungi. These findings expand the known geographic distribution and host range of these taxa. They further highlight the role of medicinal plants in arid ecosystems as reservoirs of endophytic fungi with important ecological functions and promising biotechnological potential.

References

Abdel-Hafez SI, Moubasher AH, Abdel-Fattah HM (1977) Studies on mycoflora of salt marshes in Egypt. IV = osmophilic fungi. Mycopathologia 62:143–151. https://doi.org/10.1007/BF00444107

Abdel-Hafez SI, Nafady NA, Abdel-Rahim IR, Shaltout AM, Daròs JA, Mohamed MA (2016) Biosynthesis of silver nanoparticles using the compound curvularin isolated from the endophytic fungus Epicoccum nigrum: characterization and antifungal activity. Journal of Pharmaceutical and Applied Chemistry 2(1):19–29.‏

Abou El-Kassem L, Hawas UW, El-Souda S, Ahmed EF, El-Khateeb W, Fayad W (2019) Anti-HCV protease potential of endophytic fungi and cytotoxic activity. Biocatalysis and Agricultural Biotechnology 19:101170.‏ https://doi.org/10.1016/j.bcab.2019.101170

Aghyl H, Mehrabi-Koushki M, Esfandiari M (2022) New records of the fungal species associated with insects in Iran. Journal of Applied Research in Plant Protection 11(1):61–79.‏ https://doi.org/10.22034/arpp.2021.13541

Ahumada-Rudolph R, Novoa V, Becerra J (2019) Morphological response to salinity, temperature, and pH changes by marine fungus Epicoccum nigrum. Environmental Monitoring and Assessment 191:35. https://doi.org/10.1007/s10661-018-7166-5

Aleynova OA, Nityagovsky NN, Ananev AA, Suprun AR, Ogneva ZV, Dneprovskaya AA, Beresh AA, Tyunin AP, Dubrovina AS, Kiselev KV (2023) The endophytic microbiome of wild grapevines Vitis amurensis Rupr. and Vitis coignetiae Pulliat growing in the Russian Far East. Plants 12:2952. https://doi.org/10.3390/plants12162952

Ali SAB, Abdelmoaty H, Ramadan H, Salman Y (2024) The endophytic fungus Epicoccum nigrum: isolation, molecular identification and study its antifungal activity against phytopathogenic fungus Fusarium solani. Journal of Microbiology, Biotechnology and Food Sciences 13(5):e10093. https://doi.org/10.55251/jmbfs.10093

Al-Snafi AE, Al-Kamel ML, Esmael ME (2019) Antifungal effect of Alhagi maurorum phenolic extract. IOSR Journal of Pharmacy 9(8):7–14.

Aly AH, Debbab A, Proksch P (2011) Fungal endophytes: unique plant inhabitants with great promises. Applied Microbiology and Biotechnology 90:1829–1845. https://doi.org/10.1007/s00253-011-3270-y

Aveskamp MM, de Gruyter J, Woudenberg JHC, Verkley GJM, Crous PW (2010) Highlights of the Didymellaceae: a polyphasic approach to characterise Phoma related pleosporalean genera. Studies in Mycology 65(1):1–60. https://doi.org/10.3114/sim.2010.65.01

Bakhit MS, Abdel-Wahab MA (2022) Safagamyces marinus gen. et sp. nov. (Halosphaeriaceae, Sordariomycetes) from Red Sea mangroves, Egypt. Phytotaxa 568(2):221–229. https://doi.org/10.11646/phytotaxa.568.2.7

Bakhit MS, Abdel-Wahab MA (2025) Paraloratospora edkuensis sp. nov. (Ascomycota, Phaeosphaeriaceae) from the brackish Lake Edku, Egypt. Botanica Marina 68(2):143–153. https://doi.org/10.1515/bot-2024-0084

Barreto GG, Gusmão LFP, Dianese JC (2022) Checklist of ascomycetes recorded on eucalypts in Brazil (1976–2022). Asian Journal of Mycology 5(1):107–129.‏ https://doi.org/10.5943/ajom/5/1/9

Bon M, Goolsby JA, Mercadier G, Guermache F, Kashefi J, Cristofaro M, Vacek AT, Kirk A (2023) Detection of a diverse endophyte assemblage within fungal communities associated with the Arundo Leaf Miner, Lasioptera donacis (Diptera: Cecidomyiidae). Diversity 15(4):571. https://doi.org/10.3390/d15040571

Braga RM, Padilla G, Araújo WL (2018) The biotechnological potential of Epicoccum spp.: diversity of secondary metabolites. Critical Reviews in Microbiology 44(6):759–778. https://doi.org/10.1080/1040841X.2018.1514364

Chen J, Akutse KS, Saqib HSA, Wu X, Yang F, Xia X, Wang L, Goettel MS, You M, Gurr GM (2020) Fungal endophyte communities of crucifer crops are seasonally dynamic and structured by plant identity, plant tissue and environmental factors. Frontiers in Microbiology 11:1519. https://doi.org/10.3389/fmicb.2020.01519

Chen Q, Bakhshi M, Balci Y, Broders KD, Cheewangkoon R, Chen SF, Fan XL, Gramaje D, Halleen F, Jung MH, et al. (2022) Genera of phytopathogenic fungi: GOPHY 4. Studies in Mycology 101(1):417–564. https://doi.org/10.3114/sim.2022.101.06

Chen Q, Hou LW, Duan WJ, Crous PW, Cai L (2017) Didymellaceae revisited. Studies in Mycology 87(1):105–159.‏ http://dx.doi.org/10.1016/j.simyco.2017.06.002

Chen Q, Jiang JR, Zhang GZ, Cai L, Crous PW (2015) Resolving the Phoma enigma. Studies in Mycology 82(1):137–217.‏ http://dx.doi.org/10.1016/j.simyco.2015.10.003

Chen X, Chen S, Guo H, Lu X, Shen H, Liu L, Wang L, Chen B, Zhang Y, Liu Y (2024) Bioactive alkaloids from the mangrove-derived fungus Nigrospora oryzae SYSU-MS0024. Marine Drugs 22(5):214. https://doi.org/10.3390/md22050214

Choi YJ, Eom H, Park J, Park J, Cheon S, Ro HS (2024) Fungal diversity in Nam River and their biodegradative activities. Mycobiology 52(2):102–110. https://doi.org/10.1080/12298093.2024.2324575

Chua RW, Song KP, Ting ASY (2022) Antimicrobial activities and phytochemical screening of endophytic fungi isolated from Cymbidium and Dendrobium orchids. South African Journal of Botany 151:909–918.‏ https://doi.org/10.1016/j.sajb.2022.11.015

Crous PW, Carnegie AJ, Wingfield MJ, Sharma R, Mughini G, Noordeloos ME, Santini A, Shouche YS, Bezerra JDP, Dima B, et al. (2019) Fungal Planet description sheets: 868–950. Persoonia 42:291.‏ https://doi.org/10.3767/persoonia.2019.42.11

Crous PW, Summerell BA, Shivas RG, Romberg M, Mel'nik VA, Verkley GJM, Groenewald JZ (2011) Fungal Planet description sheets: 92–106. Persoonia 27(1):130–162.‏ https://doi.org/10.3767/003158511X617561

de Queiroz Brito AC, de Mello JF, de Almeida Souza AE, dos Santos Nascimento S, de Souza-Motta CM, Machado AR (2023) Richness of Nigrospora spp. (Apiosporaceae) in Manihot esculenta in Brazil and the description of three new species. Mycological Progress 22:37. https://doi.org/10.1007/s11557-023-01887-4

de Silva NI, Maharachchikumbura SSN, Thambugala KM, Bhat DJ, Karunarathna SC, Tennakoon DS, Phookamsak R, Jayawardena RS, Lumyong S, Hyde KD (2021) Morpho-molecular taxonomic studies reveal a high number of endophytic fungi from Magnolia candolli and M. garrettii in China and Thailand. Mycosphere 12(1):163–237. https://doi.org/10.5943/mycosphere/12/1/3

Edler D, Klein J, Antonelli A, Silvestro D (2021) RaxmlGUI 2.0: a graphical interface and toolkit for phylogenetic analyses using RAxML. Methods in Ecology and Evolution 12:373–377.‏ https://doi.org/10.1111/2041-210X.13512

El-Afify SM, El-Metwaly MA, Abbas MA, El-Amier YA (2024) In vitro assessment of antioxidant and cytotoxic activities of Zygophyllum coccineum L. methanolic extract. Egyptian Journal of Chemistry 67(2):393–401.‏ https://doi.org/10.21608/ejchem.2023.214820.8070

El deeb BA, Faheem GG, Bakhit MS (2025a) Antimicrobial activities of biogenic silver nanoparticles synthesized by Curvularia spicifera. Sohag Journal of Science 10(1):95–102.‏ https://doi.org/10.21608/sjsci.2024.336812.1233

El deeb BA, Faheem GG, Bakhit MS (2025b) Biosynthesis of silver nanoparticles by Talaromyces funiculosus for therapeutic applications and safety evaluation. Scientific Reports 15: 13750. https://doi.org/10.1038/s41598-025-95899-7

Elkhateeb W, Faried A, El-Ghwas DE, Elnahas MO, Nafady I, Daba G (2024) Exploring the dominance of fungal genera in some Egyptian novel sources. Research Journal of Pharmacy and Technology 17(10):4727–4738.‏ https://doi.org/10.52711/0974-360X.2024.00729

El-Maghraby OM, Soltan SM, Mohamed RM, Mohamed MM (2014) Endophytic fungi of three economic plant roots in Sohag, Upper Egypt. Journal of Environmental Studies 13(1):39–52. https://doi.org/10.21608/jesj.2014.195905

El-Morsy ESM (1999) Microfungi from the ectorhizosphere-rhizoplane zone of different halophytic plants from the Red Sea Coast of Egypt. Mycologia 91(2):228–236. https://doi.org/10.1080/00275514.1999.12061012

Elnaggar MS, Fayez S, Anwar A, Ebada SS (2024) Cytotoxic naphtho-and benzofurans from an endophytic fungus Epicoccum nigrum Ann-B-2 associated with Annona squamosa fruits. Scientific Reports. 14:4940.‏ https://doi.org/10.1038/s41598-024-55168-5

Ghanem A, Al‐Karmalawy AA, Morsy NE, Elsabahy M, Rayan AM (2025) Antimicrobial and cytotoxic activities of Nigrospora oryzae endophytic fungi isolated from Moringa oleifera. Egyptian Journal of Medical Microbiology 34(1):227–236. https://dx.doi.org/10.21608/ejmm.2024.334620.1368

‏Hallmann J, Berg G, Schulz B (2006) Isolation procedures for endophytic microorganisms. In: Microbial root endophytes (Schulz BJE, Boyle CJC, Sieber TN, eds), Soil Biology, vol 9. Springer, Berlin, Heidelberg, pp 299–319. https://doi.org/10.1007/3-540-33526-9_17

Halo BA, Al-Yahyai RA, Al-Sadi AM (2020) Biological control of Pythium aphanidermatum-induced cucumber and radish damping-off by an endophytic fungus, Cladosporium omanense isolate 31R. Biocontrol Science and Technology 31(3):235–251. https://doi.org/10.1080/09583157.2020.1844148

Halo BA, Al-Yahyai RA, Maharachchikumbura SSN, Al-Sadi AM (2019) Talaromyces variabilis interferes with Pythium aphanidermatum growth and suppresses Pythium-induced damping-off of cucumbers and tomatoes. Scientific Reports 9:11255. https://doi.org/10.1038/s41598-019-47736-x

Hammouda FM, Ismail SI, Abdel-Azim NS, Shams KA (2005) A guide to medicinal plants in North Africa. IUCN (International Union for Conservation of Nature).

Hao Y, Aluthmuhandiram JVS, Chethana KWT, Manawasinghe IS, Li X, Liu M, Hyde KD, Phillips AJL, Zhang W (2020) Nigrospora species associated with various hosts from Shandong Peninsula, China. Mycobiology 48(3):169–183. https://doi.org/10.1080/12298093.2020.1761747

Hardoim PR, van Overbeek LS, Berg G, Pirttilä AM, Compant S, Campisano A, Döring M, Sessitsch A (2015) The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiology and Molecular Biology Reviews 79(3):293–320. https://doi.org/10.1128/mmbr.00050-14

Hegazy MGA, El Shazly AM, Mohamed AA, Hassan M (2019) Impact of certain endophytic fungi as biocontrol agents against sesame wilt disease. Archives of Agricultural Sciences Journal 2(2):55–68.‏ https://doi.org/10.21608/aasj.2019.25059.1021

Hou LW, Groenewald JZ, Pfenning LH, Yarden O, Crous, PW, Cai L (2020) The phoma-like dilemma. Studies in Mycology 96:309–396.‏ https://doi.org/10.1016/j.simyco.2020.05.001

Huang DY, Nong XH, Zhang YQ, Xu W, Sun LY, Zhang T, Chen GY, Han CR (2022) Two new 2, 5-diketopiperazine derivatives from mangrove-derived endophytic fungus Nigrospora camelliae-sinensis S30. Natural Product Research 36(14):3651–3656.‏ https://doi.org/10.1080/14786419.2021.1878168

Hyde KD, Dong Y, Phookamsak R, Jeewon R, Bhat DJ, Jones EG, Liu N, Abeywickrama PD, Mapook A, Wei D, et al. (2020) Fungal diversity notes 1151–1276: taxonomic and phylogenetic contributions on genera and species of fungal taxa. Fungal Diversity 100:5–277. https://doi.org/10.1007/s13225-020-00439-5

Hyde KD, Norphanphoun C, Abreu VP, Bazzicalupo AKW, Chethana T, Clericuzio M, Dayarathne MC, Dissanayake AJ, Ekanayaka AH, He M, et al. (2017) Fungal diversity notes 603–708: taxonomic and phylogenetic notes on genera and species. Fungal Diversity 87:1–235. https://doi.org/10.1007/s13225-017-0391-3

Jayasiri SC, Hyde KD, Jones EBG, Jeewon R, Ariyawansa HA, Bhat JD, Camporesi E, Kang JC (2017) Taxonomy and multigene phylogenetic evaluation of novel species in Boeremia and Epicoccum with new records of Ascochyta and Didymella (Didymellaceae). Mycosphere 8(8):1080–1101. https://doi.org/10.5943/mycosphere/8/8/9

Lee W, Kim DG, Perera RH, Kim JS, Cho Y, Lee JW, Seo CW, Lim YW (2023) Diversity of Nigrospora (Xylariales, Apiosporaceae) species identified in Korean macroalgae including five unrecorded species. Mycobiology 51(6):401–409.‏ https://doi.org/10.1080/12298093.2023.2283272

Link HF (1815) Mag. Neuesten Entdeck. Gesammten Naturk Ges Naturf Freunde Berlin 7:32.‏

Manawasinghe IS, Hyde KD, Wanasinghe DN, Karunarathna SC, Maharachchikumbura SS, Samarakoon MC, Voglmayr H, Pang K, Chiang MW, Jones EBG, et al. (2025) Fungal diversity notes 1818–1918: taxonomic and phylogenetic contributions on genera and species of fungi. Fungal Diversity 130:1–261. https://doi.org/10.1007/s13225-024-00541-y

Manawasinghe IS, Li X, Zhang W, Zhou Y, Tang X, Chethana KT, Yan J, Brooks S, Hyde KD (2020) Morphological and phylogenetic characterisation of endophytic fungi associated with the grapevine flowers in China. Phytotaxa 455(2):95–118.‏ https://doi.org/10.11646/phytotaxa.455.2.3

Metwaly AM, Kadry HA, El-Hela AA, Mohammad AI, Ma G, Cutler SJ, Ross SA (2014) Nigrosphaerin A a new isochromene derivative from the endophytic fungus Nigrospora sphaerica. Phytochemistry Letters 7:1–5. https://doi.org/10.1016/j.phytol.2013.09.001

Mohamed E, Kasem AMMA, Gobouri AA, Elkelish A, Azab E (2020) Influence of maternal habitat on salt tolerance during germination and growth in Zygophyllum coccineum. Plants 9(11):1504.‏ https://doi.org/10.3390/plants9111504

Mohammed YMM, Badawy MEI (2020) Potential of phytopathogenic fungal isolates as a biocontrol agent against some weeds. Egyptian Journal of Biological Pest Control 30:92. https://doi.org/10.1186/s41938-020-00295-0

Mossa M, Gezaf S, Ibrahim A, Hamedo H (2024) Preliminary screening of endophytic fungi hosted some wild plants in North Sinai for biogenic production of silver nanoparticles. Microbial Biosystems 8(2):57–73. https://doi.org/10.21608/mb.2024.341385

Moubasher AH, Abdel-Hafez SI (1978) Study on the mycoflora of Egyptian soils. Mycopathologia 63:3–10. https://doi.org/10.1007/BF00473153

Novobranova, T.I. (1972) Species novae fungorum imperfectorum e regione Alma-Ataensi. Novosti Sistematiki Nizshikh Rastenii 9:180.

Ogaki MB, Teixeira DR, Vieira R, Lírio JM, Felizardo JP, Abuchacra RC, Cardoso RP, Zani CL, Alves TMA, Junior PAS, et al. (2020) Diversity and bioprospecting of cultivable fungal assemblages in sediments of lakes in the Antarctic Peninsula. Fungal Biology 124(6):601–611.‏ https://doi.org/10.1016/j.funbio.2020.02.015

Oh SY, Yang JH, Woo JJ, Oh SO, Hur JS (2020) Diversity and distribution patterns of endolichenic fungi in Jeju Island, South Korea. Sustainability 12(9):3769.‏ https://doi.org/10.3390/su12093769

Orina AS, Gavrilova OP, Gagkaeva TY (2023) Physiological and biochemical characters of Nigrospora gorlenkoana Novobr. occurring on cereals. Biology Bulletin 50:837–849.‏ https://doi.org/10.1134/S1062359023602550

Petrović E, Vrandečić K, Ćosić J, Đermić E, Godena S (2023) First report of Nigrospora species causing leaf spot on olive (Olea europaea L.). Horticulturae 9(10):1067.‏ https://doi.org/10.3390/horticulturae9101067

Rana KL, Kour D, Kaur T, Devi R, Negi C, Yadav AN, Yadav N, Singh K, Saxena AK (2020) Endophytic fungi from medicinal plants: biodiversity and biotechnological applications. In: Microbial endophytes (Kumar A, Radhakrishnan EK, eds). Woodhead Publishing, Oxford, UK, pp 273–305. https://doi.org/10.1016/B978-0-12-819654-0.00011-9

Raza M, Zhang ZF, Hyde KD, Diao YZ, Cai L (2019) Culturable plant pathogenic fungi associated with sugarcane in southern China. Fungal Diversity 99:1–104. https://doi.org/10.1007/s13225-019-00434-5

Rivera‐Vega LJ, Zhou W, Buchman LW, Valencia CU, Jack AL, Castillo Lopez D, Sword GA (2022) Plant‐associated fungi affect above‐and belowground pest responses to soybean plants. Journal of Applied Microbiology 133(2):422–435. ‏https://doi.org/10.1111/jam.15554

Rodríguez J, Vázquez L, Flórez AB, Mayo B (2023) Epicoccum sp. as the causative agent of a reddish-brown spot defect on the surface of a hard cheese made of raw ewe milk. International Journal of Food Microbiology 406:110401.‏ https://doi.org/10.1016/j.ijfoodmicro.2023.110401

Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19(12):1572–1574.‏ https://doi.org/10.1093/bioinformatics/btg180

Safi A, Mehrabi-Koushki M, Arzanlou M (2024) Endophytic species of Nigrospora from grasses and shrubs of Shadegan International Wetland, with new species and records from Iran. Antonie van Leeuwenhoek 117:77. https://doi.org/10.1007/s10482-024-01976-8

Salem HS, Abouzeid M, Ghazy M, Ibrahim NA (2025) Diversity of culturable mycoendophytes in Egyptian Red Sea mangrove Avicennia marina. Egyptian Journal of Botany 65(1):219–231.‏ https://dx.doi.org/10.21608/ejbo.2024.301366.2907

Schol-Schwarz MB (1959) The genus Epicoccum link. Transactions of the British Mycological Society 42(2):149–173.‏ https://doi.org/10.1016/S0007-1536(59)80024-3.

Seifert K, Morgan-Jones G, Gams W, Kendrick B (2011) The Genera of Hyphomycetes. CBS Biodiversity Series no. 9:1–997. CBS-KNAW Fungal Biodiversity Centre, Utrecht, Netherlands.

Soror NH, Abdel-Rahman T, Ali DM, Ali EAM (2024) Diversity, tolerance and antioxidant enzymes of indigenous fungi isolated from xerophytes grown in stressed soil. Journal of Applied Biotechnology Reports 11(2):1322–1333. https://doi.org/10.30491/jabr.2024.421027.1682

Swofford DL (2003) "PAUP* phylogenetic analysis using parsimony (* and other methods). Version 4. http://paup.csit.fsu.edu/

Tan YP, Bishop-Hurley SL, Shivas RG, Cowan DA, Maggs-Kölling G, Maharachchikumbura SS, Pinruan U, Bransgrove KL, De la Peña-Lastra S, Larsson E, et al. (2022) Fungal Planet description sheets: 1436–1477. Persoonia 49(1):261–350.‏ https://doi.org/10.3767/persoonia.2022.49.08

Tennakoon DS, Kuo CH, Maharachchikumbura SS, Thambugala KM, Gentekaki E, Phillips AJ, Bhat DJ, Wanasinghe DN, de Silva NI, Promputtha I, et al. (2021) Taxonomic and phylogenetic contributions to Celtis formosana, Ficus ampelas, F. septica, Macaranga tanarius and Morus australis leaf litter inhabiting microfungi. Fungal diversity 108(1):1–215.‏ https://doi.org/10.1007/s13225-021-00474-w

Thambugala KM, Wanasinghe DN, Phillips AJL, Camporesi E, Bulgakov TS, Phukhamsakda C, Ariyawansa HA, Goonasekara ID, Phookamsak R, Dissanayake A, et al. (2017) Mycosphere notes 1–50: grass (Poaceae) inhabiting Dothideomycetes. Mycosphere 8(4):697–796.‏ https://doi.org/10.5943/mycosphere/8/4/13

Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTALX windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research 25(24):4876–4882. https://doi.org/10.1093/nar/25.24.4876

Tian LY, Zhang YF, Lian T, Qin CS, Xu JZ (2020) Nigrospora guangdongensis sp. nov. from the needle of Cunninghamia lanceolata in China.‏ Phytotaxa 449(2):181–187. https://doi.org/10.11646/phytotaxa.449.2.6

Tian XG, Bao DF, Karunarathna SC, Jayawardena RS, Hyde KD, Bhat DJ, Luo ZL, Elgorban AM, Hongsanan S, Rajeshkumar KC, et al. (2024) Taxonomy and phylogeny of ascomycetes associated with selected economically important monocotyledons in China and Thailand. Mycosphere 15(1):1–274. https://doi.org/10.5943/mycosphere/15/1/1

Toghueo RM, Zabalgogeazcoa I, de Aldana BV, Boyom FF (2017) Enzymatic activity of endophytic fungi from the medicinal plants Terminalia catappa, Terminalia mantaly and Cananga odorata. South African Journal of Botany 109:146–153.‏ https://doi.org/10.1016/j.sajb.2016.12.021

Toppo P, Jangir P, Mehra N, Kapoor R, Mathur P (2024) Bioprospecting of endophytic fungi from medicinal plant Anisomeles indica L. for their diverse role in agricultural and industrial sectors. Scientific Reports 14:588. https://doi.org/10.1038/s41598-023-51057-5

Udoukpo FC, Bassey IN, Yaro CA, Fatunla OK, Ita B, Inam EJ, Essien JP (2024) Phytochemical associes of fungal endophytes in Nigeria Riverine mangrove ecosystem. Journal of Materials & Environmental Sustainability Research 4(3):1–12.‏ https://doi.org/10.55455/jmesr.2024.009

Ukwatta KM, Lawrence JL, Wijayarathna CD (2019) The study of antimicrobial, anti-cancer, anti-inflammatory and α-glucosidase inhibitory activities of Nigronapthaphenyl, isolated from an extract of Nigrospora sphaerica. Mycology 10(4):222–228. https://doi.org/10.1080/21501203.2019.1620892

Valenzuela-Lopez N, Cano-Lira JF, Guarro J, Sutton DA, Wiederhold N, Crous PW, Stchigel AM (2018) Coelomycetous Dothideomycetes with emphasis on the families Cucurbitariaceae and Didymellaceae. Studies in Mycology 90(1):1–69.‏ https://doi.org/10.1016/j.simyco.2017.11.003

Vilgalys R, Hester M (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. Journal of Bacteriology 172(8):4238–4246.‏ https://doi.org/10.1128/jb.172.8.4238-4246.1990

Voronin LV, Kopytina NI, Bocharova EA (2021) Checklist of fungi and fungi-like organisms on the common reed Phragmites australis. Asian Journal of Mycology 4(2):67–113. https://doi.org/10.5943/ajom/4/2/7

Vu D, Groenewald M, De Vries M, Gehrmann T, Stielow B, Eberhardt U, Al-Hatmi A, Groenewald JZ, Cardinali G, Verkley GJM, et al. (2019) Large-scale generation and analysis of filamentous fungal DNA barcodes boosts coverage for kingdom fungi and reveals thresholds for fungal species and higher taxon delimitation. Studies in Mycology 92(1):135–154.‏ https://doi.org/10.1016/j.simyco.2018.05.001

Wanasinghe DN, Phukhamsakda C, Hyde KD, Jeewon R, Lee HB, Jones GEB, Tibpromma S, Tennakoon DS, Dissanayake AJ, Jayasiri SC, et al. (2018) Fungal diversity notes 709–839: taxonomic and phylogenetic contributions to fungal taxa with an emphasis on fungi on Rosaceae. Fungal Diversity 89(1):1–236.‏ https://doi.org/10.1007/s13225-018-0395-7

Wang M, Liu F, Crous PW, Cai L (2017) Phylogenetic reassessment of Nigrospora: ubiquitous endophytes, plant and human pathogens. Persoonia 39:118–142. https://doi.org/10.3767/persoonia.2017.39.06

Wang M, Tan XM, Liu F, Cai L (2018) Eight new Arthrinium species from China. MycoKeys (34):1–34.‏ https://doi.org/10.3897/mycokeys.34.24221

Wang X, Zhang Y, Li J, Ding Y, Ma X, Zhang P, Liu H, Wei J, Bao Y (2025) Diversity and functional insights into endophytic fungi in halophytes from West Ordos Desert ecosystems. Journal of Fungi 11:30. https://doi.org/10.3390/jof11010030

Wang Y, Tu Y, Chen X, Jiang H, Ren H, Lu Q, Wei C, Lv W (2024) Didymellaceae species associated with tea plant (Camellia sinensis) in China. MycoKeys 105:217–251.‏ https://doi.org/10.3897/mycokeys.105.119536

White TJ, Bruns TD, Lee SB, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: PCR protocol: a guide to methods and applications (Innis MA, Gelfand DH, Sninsky JJ, White TJ, eds). Academic Press, San Diego pp 315–321.

Wilson D (1995) Endophyte: the evolution of a term, and clarification of its use and definition. Oikos 73(2):274–276. https://doi.org/10.2307/3545919

Wiyakrutta S, Sriubolmas N, Panphut W, Thongon N, Danwisetkanjana K, Ruangrungsi N, Meevootisom V (2004) Endophytic fungi with anti-microbial, anti-cancer and anti-malarial activities isolated from Thai medicinal plants. World Journal of Microbiology and Biotechnology 20:265–272.‏ https://doi.org/10.1023/B:WIBI.0000023832.27679.a8

Zhang QH, Tian L, Sun ZL, Fang S, Cai GL, Wang YJ, Pei YH (2015) Two new secondary metabolites from the marine-derived fungus Nigrospora sphaerica. Journal of Asian Natural Products Research 17(5):497–50. https://doi.org/10.1080/10286020.2015.1009899

Zhang YY, Zhang T, Li HY, Zheng R, Ren J, Yang Q, Jiang N (2024) Nigrospora humicola (Apiosporaceae, Amphisphaeriales), a new fungus from soil in China. Diversity 16(2):118. https://doi.org/10.3390/d16020118

Zhang ZF, Zhou SY, Eurwilaichitr L, Ingsriswang S, Raza M, Chen Q, Zhao P, Liu F, Cai L (2021) Culturable mycobiota from Karst caves in China II, with descriptions of 33 new species. Fungal Diversity 106(1):29–136.‏ https://doi.org/10.1007/s13225-020-00453-7

Zimmerman A (1902) Ueber einige an tropischen Kulturpflanzen beobachtete Pilze III. Zentralblatt für Bakteriologie, Parasitenkunde 8:216–221.‏

Zuo Y, Li X, Yang J, Liu J, Zhao L, He X (2021) Fungal endophytic community and diversity associated with desert shrubs driven by plant identity and organ differentiation in extremely arid desert ecosystem. Journal of Fungi 7(7):578. https://doi.org/10.3390/jof7070578

Downloads

Published

2025-12-01

How to Cite

Bakhit, M. S., Faheem, G. G., & El Deeb, B. A. A. (2025). New host and geographic records of Epicoccum italicum (Didymellaceae) and Nigrospora gorlenkoana (Apiosporaceae) from Egypt. Italian Journal of Mycology, 54(1), 198–218. https://doi.org/10.6092/issn.2531-7342/21713

Issue

Section

Articles