Biological characteristics of Punctularia atropurpurascens through morphological and molecular analyses during development

Arnold Knijn, Irja Saar, Amalia Ferretti

Abstract


In this study, further evidences of the presence of the (sub)tropical Punctularia atropurpurascens in Rome are reported. Besides its generally described saprotrophic behaviour, some of the new-found specimens revealed a parasitic ability of the fungus. Moreover, although reputed a quite rare fungal species in Italy, P. atropurpurascens shows great capacity to develop in its places of manifestation under favourable climatic and environmental conditions. A comparison of morphological and molecular analyses of the fungus under various conditions gives suggestive information on the underlying biology. Furthermore, proton NMR analyses of the biochemical composition of the red drops secreted by the fungus showed the presence of lipids involved in cellular signal transduction pathways as well as phlebiarubrone-related molecules

Keywords


phlebiarubrone; lipids; NMR analysis, Quercus spp.; ITS region; parasitic fungi

Full Text:

PDF (English)

References


Alikhan NF, Petty NK, Ben Zakour NL and Beatson SA (2011) BLAST Ring Image Generator (BRIG): simple prokaryote genome comparisons. BMC Genomics 12:402.

https://doi.org/10.1186/1471-2164-12-402

Alvarez-Vasquez F, Riezman H, Hannun YA, Voit EO (2011) Mathematical modeling and validation of the ergosterol pathway in Saccharomyces cerevisiae. PLoS ONE 6(12):e28344. https://doi.org/10.1371/journal.pone.0028344

Anke H, Casser I, Steglich W, Pommer EH (1986) Antibiotics from basidiomycetes. 26. Phlebiakauranol aldehyde an antifungal and cytotoxic metabolite from Punctularia atropurpurascens. The Journal of Antibiotics 40(4):443-449.

https://doi.org/10.7164/antibiotics.40.443

Baojun W, Gaskell J, Held BW, Toapanta C, Vuong T, Ahrendt S, Lipzen A, Zhang J, Schilling JS, Master E, Grigoriev IV, Blanchette RA, Cullen D, Hibbett DS (2018) Substrate-specific differential gene expression and RNA editing in the brown rot fungus Fomitopsis pinicola. Applied and Environmental Microbiology 84:e00991-18. https://doi.org/10.1128/AEM.00991-18

Brown DA, London E (2000) Structure and function of sphingolipid- and cholesterol-rich membrane rafts. Journal of Biological Chemistry 275(23):17221-17224. https://doi.org/10.1074/jbc.R000005200

Burè C, Cacas JL, Mongrand S and Schmitter JM (2014) Characterization of glycosyl inositol phosphoryl ceramides from plants and fungi by mass spectrometry. Analytical and Bioanalytical Chemistry 406(4):995-1010. https://doi.org/10.1007/s00216-013-7130-8

Calì V, Spatafora C, Tringali C (2003) Polyhydroxy-p-terphenyls and related p-terphenylquinones from fungi: overview and biological properties. Studies in Natural Products Chemistry 29J:263-307. https://doi.org/10.1016/S1572-5995(03)80009-1

Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL (2009). BLAST+: architecture and applications. BMC Bioinformatics 10:421-429. https://doi.org/10.1186/1471-2105-10-421

Di Marco A, Gaetani M, Scarpinato B (1969) Adriamycin (NSC-123,127): A new antibiotic with antitumor activity. Cancer Chemotherapy Reports 53(1):33-37.

Dupont S, Lemetais G, Ferreira T, Cayot P, Gervais P, Beney L (2012) Ergosterol biosynthesis: a fungal pathway for life on land? Evolution 66(9):2961-2968. https://doi.org/10.1111/j.1558-5646.2012.01667.x

Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32(5):1792-1797. https://doi.org/10.1093/nar/gkh340

Ferretti A, Knijn A, Raggi C, Sargiacomo M (2003) High-resolution proton NMR measures mobile lipids associated with Triton-resistant membrane domains in haematopoietic K562 cells lacking or expressing caveolin-1. European Biophysics Journal 32:83-95. https://link.springer.com/article/10.1007/s00249-002-0273-8

Gill M, Steglich W (1987) Pigments of Fungi (Macromycetes). In: Progress in the chemistry of organic natural products, vol. 51. Springer-Verlag, Vienna, pp. 18-19. https://doi.org/10.1007/978-3-7091-6971-1

Gronnier J, Germain V, Gouguet P, Cacas JL, Mongrand S (2016) GIPC: Glycosyl Inositol Phospho Ceramides, the major sphingolipids on earth. Plant Signaling & Behavior 11(4):e1152438. https://doi.org/10.1080/15592324.2016.1152438

Guan XL, Souza CM, Pichler H, Dewhurst G, Schaad O, Kajiwara K, Wakabayashi H, Ivanova T, Castillon GA, Piccolis M, Abe F, Loewith R, Funato K, Wenk MR, Riezman H (2009) Functional interactions between sphingolipids and sterols in biological membranes regulating cell physiology. Molecular Biology of the Cell 20(7):2083-2095. https://doi.org/10.1091/mbc.e08-11-1126

Gutierrez ALS, Farage L, Melo MN, Mohana-Borges RS, Coddeville YGB, Wieruszeski JM, Mendonça-Previato L, Previato JO (2007) Characterization of glycoinositolphosphoryl ceramide structure mutant strains of Cryptococcus neoformans. Glycobiology 17(6):1C-11C. https://doi.org/10.1093/glycob/cwm030

Hollstein U (1974) Actinomycin, chemistry and mechanism of action. Chemical Reviews 74(6):625-652. https://doi.org/10.1021/cr60292a002

Järvinen P, Nybond S, Marcourt L, Ferreira Queiroz E, Wolfender JL, Mettälä A, Karp M, Vuorela H, Vuorela P, Hatakka A, Tammela P (2016) Cell-based bioreporter assay coupled to HPLC micro-fractionation in the evaluation of antimicrobial properties of basidiomycete fungus Pycnoporus cinnabarinus. Pharmacy Biology 54(6):1108-1115. https://doi.org/10.3109/13880209.2015.1103754

Knijn A, Ferretti A (2018) Punctularia atropurpurascens in the Villa Ada urban Park in Rome, Italy. Italian Journal of Mycology 47:29-39. https://doi.org/10.6092/issn.2531-7342/8349

Kõljalg U, Nilsson RH, Abarenkov K, Tedersoo L, Taylor AFS, Bahram M, Bates ST, Bruns TD, Bengtsson-Palme J, Callaghan TM, Douglas B, Drenkhan T, Eberhardt U, Dueñas M, Grebenc T, Griffith GW, Hartmann M, Kirk PM, Kohout P, Larsson E, Lindahl BD, Lücking R, Martín MP, Matheny PB, Nguyen NH, Niskanen T, Oja J, Peay KG, Peintner U, Peterson M, Põldmaa K, Saag L, Saar I, Schüßler A, Scott JA, Senés C, Smith ME, Suija A, Taylor DL, Telleria MT, Weiß M, Larsson KH (2013) Towards a unified paradigm for sequence-based identification of Fungi. Molecular Ecology 22(21):5271-5277. https://doi.org/10.1111/mec.12481

Larsson A (2014) AliView: a fast and lightweight alignment viewer and editor for large datasets. Bioinformatics 30(22):3276-3278. https://doi.org/10.1093/bioinformatics/btu531

Larsson KH (2007) Re-thinking the classification of corticioid fungi. Mycological Research 111:1040-1063. https://doi.org/10.1016/j.mycres.2007.08.001

Martini E (2016) Punctularia atropurpurescens. Excerpts from Crusts and Jells 88:1-8. https://www.aphyllo.net/excerpts/ecj88_Punctularia-atropurpurascens.pdf

Mondello F (2017) Punctularia atropurpurascens (Berk. & Broome) Petch 1916. MicologiaMessinese web site. https://goo.gl/66mqYT

Petch (1916) Punctularia atropurpurascens (Berk. & Broome) Petch. Annal of the Royal Botanic Garden Peradeniya 6(1):160.

Rodrigues ML, Travassos LR, Miranda KR, Franzen AJ, Rozental S, de Souza W, Alviano CS, Barreto-Bergter.E (2000) Human antibodies against a purified glucosylceramide from Cryptococcus neoformans inhibit cell budding and fungal growth. Infection and Immunity 68(12):7049-7060. https://doi.org/10.1128/iai.68.12.7049-7060.2000

Schwarze FWMR, Engels J, Matthech C (2000) Fungal strategies of wood decay in trees. Springer-Verlag, Berlin. https://doi.org/10.1007/978-3-642-57302-6

Skyba O, Cullen D, Douglas CJ, Mansfield SD (2016) Gene expression patterns of wood decay fungi Postia placenta and Phanerochaete chrysosporium are influenced by wood substrate composition during degradation. Applied and Environmental Microbiology 82(14):4387-4400. https://doi.org/10.1128/AEM.00134-16

Stephenson SL (2010) The kingdom fungi: the biology of mushrooms, moulds, and lichens. Timber Press, London.

Suzuki MR, Hunt CG, Houtman CJ, Dalebroux ZD and Hammel KE (2006) Fungal hydroquinones contribute to brown rot wood degradations. Environmental Microbiology 8(12):2214-2223. https://doi.org/10.1111/j.1462-2920.2006.01160.x

Voitk A, Saar I, Trudell S, Spirin V, Beug M, Kõljalg U (2017) Polyozellus multiplex (Thelephorales) is a species complex containing four new species. Mycologia 109(6):975-992. https://doi.org/10.1080/00275514.2017.1416246

Weiss RB (1992) The anthracyclines: will we ever find a better doxorubicin? Seminars in Oncology 19(6):670–686.




DOI: 10.6092/issn.2531-7342/9574

Refbacks

  • There are currently no refbacks.


Copyright (c) 2019 Arnold Knijn, Irja Saar, Amalia Ferretti

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.